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Trajectory Tracking with Prescribed Performance
for Underactuated Underwater Vehicles under

Model Uncertainties and External Disturbances
Charalampos P. Bechlioulis, George C. Karras, Shahab Heshmati-alamdari and Kostas J. Kyriakopoulos

Abstract—This paper addresses the tracking control problem
of 3D trajectories for underactuated underwater robotic vehicles.
Our recent theoretical results on the prescribed performance
control of fully-actuated nonlinear systems [1], [2] are inno-
vatively extended on the control of the most common types
of underactuated underwater vehicles, namely the torpedo-like
(i.e., vehicles actuated only in surge, pitch and yaw) and the
unicycle-like (i.e., vehicles actuated only in surge, heave and
yaw). The main contributions of this work concentrate on: i) the
reduced design complexity, ii) the increased robustness against
system uncertainties, iii) the prescribed transient and steady state
performance as well as iv) the minimal tracking information
requirements. More specifically, two smooth control schemes
are designed, without any a priori knowledge of the vehicle’s
dynamic model parameters, that guarantee bounded closed loop
signals and tracking with prescribed transient and steady state
performance, despite the presence of external disturbances repre-
senting ocean currents and waves. Furthermore, only the desired
trajectory and none of its higher order derivatives is employed
in the control schemes, involving thus applications where the
desired trajectory is not a priori known for all time but it is
evaluated online and hence its time derivatives are not available.
Moreover, the proposed control schemes are of low complexity
and can be easily integrated on embedded control platforms with
limited power and computational resources (e.g., Autonomous
Underwater Vehicles - AUVs). Additionally, the stability of the
unactuated degrees of freedom is assured without incorporat-
ing the corresponding velocity measurements in the control
schemes, thus increasing greatly the robustness against noises
that corrupt the specific measurements and simplifying further
the implementation. Finally, through the appropriate selection of
certain designer-specified performance functions, the proposed
schemes efficiently avoid both controllability and representation
singularities that inherently arise during the kinematic control
design of underactuated vehicles. A comparative simulation study
points out the intriguing performance properties of the proposed
method, whilst its applicability is experimentally verified using
a small unicycle-like underactuated underwater vehicle ina test
tank.

Index Terms—Underactuated Underwater Vehicles; Robust
Tracking Control; Prescribed Performance Control.

I. I NTRODUCTION

UNDERWATER activities have steadily grown in the last
fifty years imposing new challenges on technical and en-

gineering researchers supporting the offshore industry growth.

The authors are with the Control Systems Laboratory, School
of Mechanical Engineering, National Technical Universityof Athens,
Athens 15780, Greece. Emails:{chmpechl, karrasg, shahab,
kkyria}@mail.ntua.gr. This work was supported by the EU funded
project PANDORA: Persistent Autonomy through learNing, aDaptation, Ob-
servation and ReplAnning”, FP7-288273, 2012-2014.

Complex inspections of oil/gas subsea pipelines, risers, ex-
ploitation rings and novel operations in geological exploration
are now required, with the ultimate objective of educing
efficiently the plentiful underwater resources. Additionally,
a multitude of other non profitable underwater applications
in the fields of oceanography, environmental monitoring and
marine archeology have recently emerged.

In the recent wake of rapid progress in marine robotics,
that affords numerous advanced tools for offshore activities,
underwater vehicles have particularly received considerable
attention. However, further work remains to be done before
underwater robots roam the ocean freely. In that sense, the
motion control problem of underwater vehicles continues to
pose considerable challenges to system designers in view
of the increasingly demanding missions envisioned for un-
derwater robots, especially in the presence of underactuated
dynamics, stringent environmental constraints and large model
uncertainties.

A typical motion control problem is trajectory tracking that
is concerned with the design of control laws that force a
vehicle to reach and follow a reference trajectory. Classical
approaches such as local linearization and input-output decou-
pling have been used in the past to design tracking controllers
for underactuated vehicles [3]. Nevertheless, the aforemen-
tioned methods yielded poor closed loop performance and
the results were local, around only certain selected operat-
ing points. An alternative approach involves output feedback
linearization [4]–[6], which however is not always possible.
Moreover, based on a combined approach involving Lyapunov
theory and backstepping, various nonlinear model–based tra-
jectory tracking controllers have been reported during thelast
two decades [7]–[16]. However, these schemes demand a very
accurate knowledge of the vehicle dynamic parameters, which
in most cases is quite difficult to obtain. More specifically,
in [7] the authors proposed a cascade control strategy that
consists of a kinematic control law that aims at tracking a
desired trajectory and a dynamical control law, based on the
backstepping technique, that tracks the desired velocity control
signals. In [8], extending from their previous works in [9],
[10], the authors proposed a nonlinear adaptive controllerthat
drives an underactuated underwater vehicle moving on a hor-
izontal plane along a sequence of way points. The controller
is designed initially at the kinematic level and subsequently,
employing the integrator backstepping technique, is extended
to the dynamical model. However, the effect of ocean currents
either is assumed to be known or an exponential observer is
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adopted for its estimation, thus increasing the design com-
plexity. In [12], the authors developed a trajectory tracking
controller based on the integral backstepping technique. Nev-
ertheless, the effect of the second hydrodynamic damping
force was ignored. In [13] the authors presented a model
based output feedback controller for trajectory tracking with
a slender-body underactuated underwater vehicle. In a recent
work [14], a position tracking controller for underactuated
vehicles moving on a horizontal plane was presented. The
authors assumed that the motion of the vehicle is affected by
constant, unknown ocean currents and designed an observer to
estimate them. However, model uncertainties and time varying
sea currents were not considered. In [15], a trajectory tracking
controller for underactuated vehicles was designed based on
the one-step ahead backstepping technique and the Lyapunov’s
direct method. In order to avoid the geometric singularities in
the kinematic model, a combination of the Euler angles and
unit-quaternion representation was adopted. However, even
though the effect of sea currents was considered, the inherent
uncertainties of the dynamic model were ignored. Finally, a
path following and trajectory tracking control scheme for un-
deractuated vehicles was proposed in [16], based on previous
work in [17], resulting in a more smooth spatial convergence
and a more tight temporal performance.

Uncertainties in the dynamic model of underactuated un-
derwater vehicles have been mainly compensated by adaptive
control techniques. In [18], a switching adaptive law is com-
bined with a nonlinear control scheme. In [19] the authors,
based on their previous work [20], presented a robust adap-
tive control strategy for path following for an underactuated
vehicle in the presence of external disturbances and model
uncertainties. However, the application of the aforementioned
control schemes in a real time experiment is questionable,
owing to their sensitivity to unknown parameters. On the other
hand, experimental results for an adaptive control scheme were
presented in [21]. Nevertheless, partial a priori knowledge
of the dynamic parameters was requested. Additionally, a
hybrid parameter adaptation law, based on switching control
theory, was adopted in [22], [23]. However, environmental
disturbances and unmodeled dynamics were not considered.
Alternatively, sliding mode control theory was also employed
in [24]–[29] to deal with model uncertainty in the vehicle’s
dynamic model. Nonetheless, the main disadvantage of the
aforementioned control schemes is the inherent control input
chattering that is energy intensive and may result in high
frequency dynamics, which is undesirable for underwater ap-
plications. Finally, adaptive neural network and fuzzy control
schemes that deal with model uncertainties have also been
proposed in [30]–[35], exploiting the universal approximation
capabilities of neural network and fuzzy system structures.
Unfortunately, the aforementioned schemes [30]–[35] inher-
ently introduce certain issues affecting closed loop stability
and robustness. Specifically, even though the existence of a
closed loop initialization set as well as of control gain values
that guarantee closed loop stability can be proven, the problem
of proposing an explicit constructive methodology capable
of a priori imposing the required stability properties is not
addressed. As a consequence, the produced control schemes

yield inevitably reduced levels of robustness against modeling
imperfections. Moreover, the results are restricted to be local
as they are valid only within the compact set where the
capabilities of the universal approximators hold. Finally, the
introduction of approximating/estimating structures increases
the complexity of the proposed control schemes in the sense
that extra adaptive parameters have to be updated (i.e., extra
nonlinear differential equations have to be solved numerically)
and extra calculations have to be conducted to output the
control signal, thus making their implementation on embedded
control systems difficult.

Despite the recent progress in the tracking control for
underactuated underwater vehicles, certain issues still remain
open. First, even in case of accurately known vehicle model,
external disturbances affect the tracking performance severely,
thus making the problem of guaranteeing prescribed transient
and steady state performance difficult or impossible in certain
situations. Furthermore, the tracking performance deteriora-
tion becomes more intense when uncertainty in the vehicle
model (which is inevitable) is also present. Moreover, all
aforementioned developments require accurate measurements
of the vehicle velocities in all degrees of freedom as well as
of the velocity (and in some cases the acceleration) of the
desired trajectory, which significantly increases the costof the
vehicle’s sensor suite and the complexity of the sensor fusion
algorithms, thus reducing their applicability.

Contrary to the current state of the art in the underwater
vehicle control literature, the proposed control schemes that
are designed for the most common types of underactuated
underwater vehicles1, namely torpedo-like and unicycle-like
vehicles, achieve tracking with prescribed performance despite
the presence of external disturbances representing ocean cur-
rents and waves and without requiring prior information of the
vehicle’s dynamic model parameters. The main contributions
of this work can be summarized as follows:

1) Structural Complexity and Robustness against Measure-
ment Noises:The proposed control schemes do not incorporate
any prior knowledge of the external disturbances and the
vehicle’s dynamic model parameters or even of some cor-
responding upper bounding constants. Furthermore, no esti-
mation (i.e., adaptive control) has been employed to acquire
such knowledge. Moreover, compared with the traditional
backstepping-like approaches, the proposed schemes prove
significantly less complex. No hard calculations are required to
output the proposed control signals, thus making implementa-
tion straightforward. Finally, no velocity measurements of the
unactuated degrees of freedom are incorporated in the control
schemes, thus increasing greatly the robustness against noises
that corrupt the specific measurements and simplifying further
the implementation.

2) Robust Prescribed Performance and Control Gains Selec-
tion: The actual tracking performance of the proposed control
schemes is solely determined by certain designer specified
performance functions and is isolated from the control gains

1In this work, we extend our recent results [36] on the controlof
torpedo-like underwater vehicles by additionally studying the stability of the
unactuated degrees of freedom as well as by considering the unicycle-like
underactuated model of underwater vehicles.
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selection as well as from the model uncertainties, thus ex-
tending greatly the robustness of the closed loop system. In
this way, the control objectives are achieved without resorting
to extreme values of the control gains. Their selection is
significantly simplified to adopting those values that lead to
reasonable control effort.

3) Minimal Tracking Information:The proposed control
schemes are independent of the time derivatives of the desired
trajectory. Hence, applications where the desired trajectory is
not a priori known for all time but it is measured and thus its
time derivatives are not available, can be considered.

A. Preliminaries

At this point, we recall some notations, definitions and pre-
liminary results that are necessary in the subsequent analysis.

1) Notation: Throughout this paper,In is the n-th di-
mensional identity matrix,ℜn denotes then-th dimensional
Euclidean space andℜn×n represents the set of all square
n × n real matrices. The absolute value of a scalara ∈ ℜ
and the Euclidean norm of a vectora ∈ ℜn are de-
noted by |a| and ‖a‖ respectively. Furthermore, given a
positive definite matrixA, λmin (A) and λmax (A) denote
its minimum and maximum eigenvalues. Finally,SO (3) =
{
A ∈ ℜ3×3 : AAT = I3 & det (A) = 1

}
denotes the group

of all normal rotations.
2) Prescribed Performance:It will be clearly demonstrated

in the sequel that the concepts and techniques of prescribed
performance control, recently developed in [1], [2] for fully-
actuated nonlinear systems, are innovatively adapted to deal
with the tracking control problem of underactuated underwater
vehicles. Prescribed performance characterizes the behavior
where the tracking error converges to a predefined arbitrarily
small residual set with convergence rate no less than a certain
predefined value. In that respect, consider a generic scalar
tracking errore (t). Prescribed performance is achieved ife (t)
evolves strictly within a predefined region that is bounded
by certain functions of time. The mathematical expression of
prescribed performance is given by the following inequalities:

ρL (t) < e (t) < ρU (t) , ∀t ≥ 0 (1)

where ρL (t), ρU (t) are smooth and bounded functions of
time satisfyinglimt→∞ ρU (t) > limt→∞ ρL (t), called per-
formance functions. In this sense, consider the exponential
performance functionsρi (t) = (ρi0 − ρi∞) exp (−lit) + ρi∞
with ρi0, ρi∞, li, i ∈ {L,U} appropriately chosen constants.
Specifically, the constantsρL0 = ρL (0), ρU0 = ρU (0) are
selected such thatρL0 < e (0) < ρU0. Furthermore, the
constantsρL∞ = limt→∞ ρL (t), ρU∞ = limt→∞ ρU (t) rep-
resent the maximum allowable range of the tracking errore (t)
at steady state, which may even be set arbitrarily small to a
value reflecting the resolution of the measurement device, thus
achieving practical convergence ofe (t) to zero. Moreover,
the decreasing rate ofρL (t), ρU (t) which is affected by the
constantslL, lU in this case, introduces a lower bound on the
required speed of convergence ofe (t). Therefore, the appro-
priate selection of the performance functionsρL (t), ρU (t)
imposes transient and steady state performance characteristics
on the tracking errore (t).
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Fig. 1: The inertial (blue) and the body-fixed (red) coordinate frames.

3) Dynamical Systems:In this work, the forward complete-
ness of the closed loop system will be based on the following
preliminary results on dynamical systems. Thus, consider the
initial value problem:

ξ̇ = h (t, ξ) , ξ (0) = ξ0 ∈ Ωξ (2)

with h : ℜ+ × Ωξ → ℜn, whereΩξ ⊂ ℜn is a non-empty
open set.

Definition 1. [37] A solutionξ (t) of the initial value problem
(2) is maximal if it has no proper right extension that is also
a solution of (2).

Theorem 1. [37] Consider the initial value problem (2).
Assume thath (t, ξ) is: a) locally Lipschitz onξ for almost all
t ∈ ℜ+, b) piecewise continuous ont for each fixedξ ∈ Ωξ
and c) locally integrable ont for each fixedξ ∈ Ωξ. Then,
there exists a maximal solutionξ (t) of (2) on the time interval
[0, τmax) with τmax > 0 such thatξ (t) ∈ Ωξ, ∀t ∈ [0, τmax).

Proposition 1. [37] Assume that the hypotheses of Theorem
1 hold. For a maximal solutionξ (t) on the time interval
[0, τmax) with τmax < ∞ and for any compact setΩ′

ξ ⊂ Ωξ
there exists a time instantt′ ∈ [0, τmax) such thatξ (t′) /∈ Ω′

ξ.

II. PROBLEM STATEMENT

In this section, the kinematics and dynamics of a 6 DoF un-
derwater vehicle model are initially presented. Subsequently,
we introduce two of the most common classes of underactu-
ated vehicles that are considered in this work (i.e., torpedo-
like and unicycle-like underactuated vehicles) and finallythe
trajectory tracking problem is rigorously formulated.

A. Vehicle kinematics and dynamics

Consider a neutrally buoyant underwater vehicle modeled
as a rigid body subject to external forces and torques. Let
{I} be an inertial coordinate frame and{B} a body-fixed
coordinate frame with orthonormal axesn = [nx, ny, nz]

T ,
o = [ox, oy, oz ]

T , t = [tx, ty, tz]
T relative to {I}, whose

origin OB is located at the center of mass of the vehicle (see
Fig. 1). Further, letp = [x, y, z]

T ∈ ℜ3 be the position ofOB
in {I} andR = [n,o, t] ∈ SO (3) the rotation matrix that
describes the orientation of the vehicle. Letv = [u, v, w]

T

be the linear velocity (u, v, w are the longitudinal-surge,
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transverse-sway and vertical-heave velocities along the body
frame axisn, o, t respectively) andw = [p, q, r]

T be the
angular velocity (p, q, r are the angular velocities around
the longitudinal-roll, the transverse-pitch and vertical-yaw axis
respectively) ofOB with respect to{I} expressed in{B}.
Hence, the kinematic equations of motion for the considered
vehicle may be written as:

ṗ = Rv+δc (t) (3)

Ṙ = RS (w) (4)

where δc (t) = [δx (t) , δy (t) , δz (t)]
T denotes bounded

and slowly varying ocean currents [3] andS (w) =



0 −r q
r 0 −p
−q p 0



. Alternatively, the orientation of the ve-

hicle may be described by the Euler angles’ parameterization
η = [φ, θ, ψ]

T , whereφ, θ andψ are the roll, pitch, yaw angles
respectively, that is mainly employed owing to its physical
meaning (i.e., the inertial coordinate frame{I} after three
successive rotations ofψ, θ, φ angles about itsz, y and x
axes respectively ends up parallel to the body-fixed coordinate
frame {B}, see Fig. 1). Thus, the rotation matrixR may be
expressed via the roll, pitch and yaw angles as follows:

R (η) =





cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ



 (5)

where s⋆ = sin (⋆) and c⋆ = cos (⋆). Additionally, the body-
fixed angular velocityw and the Euler angles’ ratėη are
related throughη̇ = J (η)w where:

J (η) =





1 tθsφ tθcφ
0 cφ −sφ
0 sφ/cθ cφ/cθ



 (6)

is a transformation matrix that does not belong toSO (3)
(i.e., JT (η) 6= J−1 (η)) with t⋆ = tan (⋆). In this way, the
kinematic equations of the vehicle may be written in the Euler
angles’ representation as follows:

ṗ = R (η)v+δc (t) (7)

η̇ = J (η)w (8)

whereR (η) andJ (η) are defined in (5) and (6) respectively.
Under standard simplifications owing to symmetries in the

mass configuration [3], the dynamic equations of motion of
underwater vehicles may be written as:

muu̇ = mvvr −mwwq +Xuu+X|u|u |u|u+X + δu (t) (9)

mvv̇ = mwwp−muur + Yvv + Y|v|v |v| v + Y + δv (t) (10)

mwẇ = muuq −mvvp+ Zww + Z|w|w |w|w + Z + δw (t) (11)

mpṗ = mvwvw +mqrqr +Kpp+K|p|p |p| p+ zBW cθsφ
+K + δp (t) (12)

mq q̇ = mwuwu+mrprp+Mqq +M|q|q |q| q + zBW sθ
+M + δq (t) (13)

mrṙ = muvuv +mpqqq +Nrr +N|r|r |r| r +N + δr (t) (14)

where mu, mv, mw, mp, mq, mr denote the vehicle’s
mass/moment of inertia and added mass/moment of inertia
with mvw = mv −mw, mwu = mw −mu, muv = mu−mv,

X (surge)

M (pitch)

N (yaw)

Z (heave)

X (surge)

N (yaw)

(b) Unicycle-like Underactuated Vehicle(a) Torpedo-like Underactuated Vehicle

Stern thruster

Stern thrusters

Vertical thruster

Stern fins

Fig. 2: The main classes of underactuated underwater vehicles. Blue color
indicates the actuated degrees of freedom.

mqr = mq − mr, mrp = mr − mp, mpq = mp − mq and
Xu, X|u|u, Yv, Y|v|v, Zw, Z|w|w, Kp, K|p|p, Mq, M|q|q, Nr,
N|r|r are negative hydrodynamic damping coefficients. It is
also assumed that the vehicle’s center of buoyancy lies on
the body-fixedz-axis (i.e., heave) above its center of gravity
(i.e., zB < 0 where zB defines the position of the center
of buoyancy2 with respect toOB). Moreover,δu (t), δv (t),
δw (t), δp (t), δq (t), δr (t) denote bounded exogenous forces
and torques acting on surge, sway, heave, roll, pitch, yaw
owing to ocean waves [3] andX , Y , Z, K, M , N denote
(depending on the vehicle’s degrees of actuation as discussed
in the sequel) control input forces and torques that are applied
in order to produce the desired motion of the body fixed frame.

B. Classes of underactuated vehicles

In this work, we consider the most common types of
underactuated underwater vehicles, namely the torpedo-like
and unicycle-like vehicles (see Fig. 2).

Torpedo-like underactuated vehicles:The vehicles con-
sidered in this class are actuated by a forceX along their
longitudinal (surge) axis as well as by torquesM andN about
their transverse (pitch) and vertical (yaw) axes respectively
(see Fig. 2a). The aforementioned forceX and torquesM , N
define the input control variables of the corresponding dynamic
system (9)-(14), which in this case is unactuated in sway, heave
and roll degrees of freedom (i.e.,Y = 0, Z = 0 andK = 0).

Unicycle-like underactuated vehicles:The vehicles con-
sidered in this class are actuated by forcesX andZ along the
longitudinal (surge) and vertical (heave) axes respectively and
a torqueN about the vertical (yaw) axis (see Fig. 2b). The
aforementioned forcesX , Z and torqueN define the input
control variables of the corresponding dynamic system (9)-
(14), which in this case is unactuated in sway, roll and pitch
degrees of freedom (i.e.,Y = 0, K = 0 andM = 0).

Remark 1. Torpedo-like vehicles are commonly equipped with
only one stern thruster and two stern fins (see Fig. 2a). In this
way, the action of the stern thruster results in forceX and
the pitch and yaw momentsM , N satisfy:

M ∝ u2δq, N ∝ u2δr (15)

whereu is the surge velocity andδq, δr denote the angles of
the corresponding fins. In addition, unicycle-like vehicles are

2Notice that the vehicle weightW is equal to the buoyancy force, owing
to the neutral buoyancy assumption.
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usually equipped with two identical rear thrusters, mounted
symmetrically with respect to their longitudinal axis as well
as a thruster mounted along the vertical axis (see Fig. 2b).
In this way, the common and the differential action modes of
the rear thrusters result in forceX and torqueN respectively,
whereas the action of the vertical thruster results in forceZ.
However, the control input signals, that will be designed inthe
sequel for both cases, are forces and torques exerted at the
center of mass of the vehicle (which is a common practice in
the related literature as well), and not direct commands to the
vehicle actuators (i.e, thrusters’ commands and fins’ angles).
Hence, dealing with potential uncertainties within the mapping
between desired body forces/torques and actuator commands
is left for future investigation.

Remark 2. Despite its physical meaning, Euler angles’ pa-
rameterization introduces a representation singularity in (8),
when the pitch angleθ approaches±90o. In this respect, since
torpedo-like vehicles may operate close to this singularity,
our approach for this class will be based on the rotation
matrix parameterization that does not suffer from geometric
singularities. On the other hand, for the class of unicycle-
like underactuated vehicles, since the unactuated pitch degree
of freedom is passive (i.e., the pitch angle will be proven to
remain bounded close to zero), the Euler angles’ parameteri-
zation will be adopted for the clarity of presentation.

C. Control objective

Let pd (t) = [xd (t) , yd (t) , zd (t)]
T denote a smooth de-

sired trajectory with bounded time derivatives (i.e., a trajectory
with bounded velocity, acceleration, etc.). The objectiveof this
paper is to propose robust control laws for the aforementioned
classes of underactuated vehicles that track the desired trajec-
tory pd (t) with prescribed performance, regarding the steady
state error and the speed of convergence (see Subsection I-A2),
despite the presence of exogenous disturbances representing
ocean currents and waves. Hence, the problem treated in this
work reads as follows:

Problem (Robust Prescribed Performance Tracking
Control for Underactuated Underwater Vehicles): Design
approximation-free control schemes for torpedo-like and
unicycle-like underactuated underwater vehicles with dynamic
model uncertainty, such that all signals in the closed loop
system remain bounded and moreover the desired trajectory
pd (t) is tracked with prescribed transient and steady state
performance.

Remark 3. In this work and contrary to what is common
practice in the related literature, no prior knowledge of
the vehicle dynamic parameters and external disturbances
or even of some corresponding upper bounding constants
will be incorporated in the control design. Furthermore, no
estimation (i.e., adaptive control techniques) will be employed
to acquire such knowledge, thus reducing the computational
complexity significantly and hence making implementation
straightforward and efficient on embedded control platforms of
autonomous underwater vehicles, endowed with limited power
and computational resources.
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Fig. 3: Torpedo-like vehicle: Graphical illustration of the errordefinition.

III. C ONTROL DESIGN

In this section, we shall present two model-free control
schemes of low-complexity, for torpedo-like and unicycle-like
underactuated underwater vehicles respectively, that lead to the
solution of the robust prescribed performance tracking control
problem stated in the previous section.

A. Torpedo-like underactuated vehicles

Given the desired trajectory pd (t) =
[xd (t) , yd (t) , zd (t)]

T , let us define the distance error:

ed =
√

e2x + e2y + e2z, (16)

where

ex = xd (t)− x, ey = yd (t)− y, ez = zd (t)− z, (17)

as well as the orientation errors:

et =
ex
ed
tx +

ey
ed
ty +

ez
ed
tz , cθt , (18)

eo =
ex
ed
ox +

ey
ed
oy +

ez
ed
oz , cθo , (19)

whereθt, θo are the angles measured from the unit error vector

ed ,

[
ex
ed
,
ey
ed
, ez
ed

]T

to the transverseo = [ox, oy, oz]
T and

vertical t = [tx, ty, tz]
T axis of the vehicle respectively. Eqs.

(18) and (19) can be easily verified if we consider the inner
products of the unit vectored with the unit vectors of the
transverseo and verticalt axis respectively, which equal to
the cosine of the angles defined by the corresponding vectors
(see Fig. 3). It should be noted that the aforementioned error
transformations (16)-(19) are employed to display the vehicle
kinematics in a form that greatly helps motivate the structure of
the controller derived in the sequel. Hence, the tracking control
problem is solved if the distance errored and the orientation
errors et, eo reduce to zero (i.e., the vehicle is heading to
the desired trajectory, since the unit vectored tends to be
normal to both the transverseo and verticalt axis of the
vehicle and consequently aligned to its longitudinaln axis,
when et → 0 and eo → 0). However, notice from (18) and
(19) that the orientation errorset, eo are well-defined only for
nonzero values ofed, since the anglesθt, θo are unidentified
when ed = 03. Thus, the proposed control scheme will be
designed to further guarantee thated (t) > ρ

d
> 0, ∀t ≥ 0,

for an arbitrarily small positive design constantρ
d
, in order

to avoid the aforementioned singularity issue whened → 0.

3Notice that the error vectored tends to the origin in such case. Hence,
the anglesθt, θo cannot be defined appropriately.
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Differentiating (16)-(19) and employing (3), (4) to obtain
the kinematics of the vehicle in the aforementioned error
coordinates, we arrive at:

ėd = −ucθn − vcθo −wcθt +
ex(ẋd−δx)+ey(ẏd−δy)+ez(żd−δz)

ed
,

(20)

ėt = qcθn − pcθo +
ucθn cθt+vcθo cθt−ws2θt

ed
+

(ẋd−δx)(edtx+excθt)
e2
d

+
(ẏd−δy)(edty+eycθt)

e2
d

+
(żd−δz)(edtz+ezcθt)

e2
d

, (21)

ėo = −rcθn + pcθt +
ucθn cθo−vs2θo+wcθt cθo

ed
+

(ẋd−δx)(edox+excθo)
e2
d

+
(ẏd−δy)(edoy+eycθo)

e2
d

+
(żd−δz)(edoz+ezcθo)

e2
d

, (22)

where the following equality:

ex
ed
nx +

ey
ed
ny +

ez
ed
nz , cθn

has been utilized, withθn denoting the angle measured from
the vectored to the longitudinaln = [nx, ny, nz]

T axis of the
vehicle. Finally, to solve the robust prescribed performance
tracking control problem, we pose the following assumption.

Assumption 1. The initial position errored (0) and heading
angle θn (0) satisfy: a)ed (0) > ρ

d
and b) |θn (0)| <

π

2
for

an arbitrarily small positive design constantρ
d
.

Remark 4. Assumption 1 guarantees via (a) that the orien-
tation errors et, eo are initially well-defined as well as via
(b) that (20)-(22) are initially controllable since|θn (0)| = π

2
(i.e., cθn(0) = 0) renders them initially uncontrollable with
respect tou, q and r respectively. In this respect, we shall
design a controller that, besides guaranteeinged (t) > ρ

d
> 0,

∀t ≥ 0, further forces the heading angleθn to satisfy
|θn (t)| ≤ θ̄n < π

2 , ∀t ≥ 0 for a positive constant̄θn, thus
evolving away from the aforementioned uncontrollable point.
Finally, notice from a practical point of view that Assumption
1 can be easily enforced by simply placing the vehicle in
an initial configuration that is heading towards the desired
trajectory (target), which is quite reasonable in underwater
applications.

Control Scheme:The proposed control scheme is first
derived at the kinematic level assuming that the control signals
are the surge velocityu as well as the pitch and yaw angular
velocitiesq, r. Subsequently, the kinematic controller is ex-
tended to the dynamic model, considering the actual control
input signalsX ,M , andN (i.e., a forceX in surge and torques
M , N in pitch and yaw). Hence, given a smooth desired
trajectorypd (t) = [xd (t) , yd (t) , zd (t)]

T with bounded time
derivatives, and any initial vehicle configuration satisfying
Assumption 1 for an arbitrarily small positive design constant
ρ
d
, the proposed control design is:
Kinematic Controller: Select position/orientation perfor-

mance functionsρd (t), ρt (t), ρo (t) that i) satisfy:

akin ed (0) < ρd (0) ρ
d
< ρd (t) ρ

d
< lim
t→∞

ρd (t)

bkin |et (0)| < ρt (0) < 1 0 < ρt (t) 0 < lim
t→∞

ρt (t)

ckin |eo (0)| < ρo (0) < 1 0 < ρo (t) 0 < lim
t→∞

ρo (t)

dkin ρ2o (t) + ρ2t (t) ≤ ρ̄ < 1, ∀t ≥ 0

for a positive constant̄ρ < 1 and ii) incorporate the desired
performance specifications regarding the steady state error
and the speed of convergence (see Subsection I-A2). Subse-
quently, design the desired velocities:

ud = kd ln










1+
ed−

ρd(t)+ρ
d

2
ρd(t)−ρ

d

2

1−
ed−

ρd(t)+ρ
d

2
ρd(t)−ρ

d

2










(23)

qd = −kt ln
(

1+
et
ρt(t)

1−
et
ρt(t)

)

(24)

rd = ko ln

(
1+

eo
ρo(t)

1−
eo
ρo(t)

)

(25)

with positive control gainskd, kt, ko.
Dynamic Controller: Select velocity performance functions

ρu (t), ρq (t), ρr (t) that satisfy:

adyn |u (0)− ud (0)| < ρu (0) 0 < ρu (t) 0 < lim
t→∞

ρu (t)

bdyn |q (0) − qd (0)| < ρq (0) 0 < ρq (t) 0 < lim
t→∞

ρq (t)

cdyn |r (0) − rd (0)| < ρr (0) 0 < ρr (t) 0 < lim
t→∞

ρr (t)

and design the force in the surge as well as the torques in
pitch and yaw as:

X = −ku ln
(

1+
u−ud
ρu(t)

1−
u−ud
ρu(t)

)

(26)

M = −kq ln
(

1+
q−qd
ρq(t)

1−
q−qd
ρq(t)

)

(27)

N = −kr ln
(

1+
r−rd
ρr(t)

1−
r−rd
ρr(t)

)

(28)

with positive control gainsku, kq, kr.
We now summarize the main results of this subsection in

the following theorem.

Theorem 2. Consider any smooth desired trajectorypd (t) =
[xd (t) , yd (t) , zd (t)]

T with bounded derivatives and a
torpedo-like underactuated underwater vehicle modeled by
(3), (4) and (9)-(14) in any initial configuration satisfying
Assumption 1, for an arbitrarily small positive design constant
ρ
d
. The proposed control scheme (23)-(28) guarantees:

ρ
d
< ed (t) < ρd (t)

−ρt (t) < et (t) < ρt (t)
−ρo (t) < eo (t) < ρo (t)






, ∀t ≥ 0

for appropriately selected performance functionsρd (t), ρt (t),
ρo (t) that incorporate the desired transient and steady state
performance specifications, and avoids the singularities in-
troduced by the error transformation (16)-(19) with bounded
closed loop signals, thus leading to the solution of the robust
prescribed performance tracking control problem as statedin
Subsection II-C.

Proof. See the Appendix.
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Remark 5. Initially, based on Assumption 1, the orientation
errors et, eo are well-defined and Eqs. (20)-(22) are control-
lable. Subsequently, the performance functionsρd (t), ρt (t)
and ρo (t) are selected such that the orientation errors are
retained well defined and the controllability of (20)-(22) is
preserved as long as prescribed performance is guaranteed,
that is ρ

d
< ed (t) < ρd (t), −ρo (t) < eo (t) < ρo (t),

−ρt (t) < et (t) < ρt (t), ∀t ≥ 0. Due to property-dkin

(i.e., ρ2o (t) + ρ2t (t) ≤ ρ̄ < 1) the prescribed performance
guarantees lead toe2o (t)+e

2
t (t) =c2θo(t)+c2θt(t) = 1−c2θn(t) ≤

ρ2o (t) + ρ2t (t) ≤ ρ̄ and consequently to|θn (t)| < θ̄n =
cos−1

(√
1− ρ̄

)
< π

2 , ∀t ≥ 0. Hence, the satisfaction of
prescribed performance constitutes a sufficient conditionfor
bypassing the aforementioned singularity issues.

B. Unicycle-like underactuated vehicles

Given the desired trajectory pd (t) =
[xd (t) , yd (t) , zd (t)]

T , let us define the position errors:

ex = xd (t)− x, ey = yd (t)− y, ez = zd (t)− z, (29)

the projected on the horizontal plane distance error:

ed =
√

e2x + e2y (30)

as well as the projected on the horizontal plane orientation
error:

eo =
ex
ed

sψ − ey
ed

cψ = sψe , (31)

whereψ is the yaw angle andψe is the angle measured from

the normalized error vectored :=
[
ex
ed
,
ey
ed
, 0
]T

on the horizon-
tal plane to the normalized projection of the longitudinal axis
of the vehicle on the horizontal plane, defined by the vector
[cψ, sψ, 0]

T . Eq. (31) can be easily verified if we consider the
cross product of the unit vectorsed and [cψ, sψ, 0]

T , which
equals to the sine of the angle the aforementioned vectors
define (see Fig.4). It should be noted that the aforementioned
error transformations (29)-(31) are employed to display the
vehicle kinematics in a form that greatly helps motivate the
structure of the controller derived in the sequel. Hence, the
tracking control problem is solved if the projected on the
horizontal plane distance errored, the vertical errorez and
the orientation erroreo reduce to zero (i.e., the vehicle is
heading to the desired trajectory since the unit vectored tends
to be aligned with the longitudinal axis of the vehicle, when
ez → 0 and eo → 0). However, notice from (31) that the
orientation erroreo is well-defined only for nonzero values of
ed, since the angleψe is unidentified whened = 04. Thus, the
proposed control scheme will be designed to further guarantee
that ed (t) > ρ

d
> 0, ∀t ≥ 0, for an arbitrarily small positive

design constantρ
d
, in order to avoid the aforementioned

singularity issue whened → 0.
Differentiating (29)-(31) and employing (5)-(8) to obtain

the kinematics of the vehicle in the aforementioned error
coordinates, we arrive at:

4Notice that the error vectored tends to the origin in such case. Hence,
the angleψe cannot be defined appropriately.

{ I }

{ B }

n
o

t

y

x

z

d tp
ye

xe
ze

e

de

Fig. 4: Unicycle-like vehicle: Graphical illustration of the error definition.

ėd = −ucψecθ − v (cψesθsφ − sψecφ)−w (cψesθcφ + sψesφ)

+ (ẋd (t)− δx (t)) cψ−ψe + (ẏd (t)− δy (t)) sψ−ψe , (32)

ėz = usθ − vcθsφ − wcθcφ + żd (t)− δz (t) , (33)

ėo = qcψe
sφ
cθ

+ rcψe
cφ
cθ

+ u
sψe cψe cθ

ed
+ v

sψe cψe sθsφ+c2ψe cφ
ed

w
sψe cψe cφsθ−c2ψe sφ

ed
+ (ẋd−δx)

ed
(sψecψ−ψe + sψ)

+
(ẏd−δy)

ed
(sψesψ−ψe − cψ) . (34)

Finally, to solve the robust prescribed performance tracking
control problem, we pose the following assumption.

Assumption 2. The vehicle initializes in such configuration
that: a)ed (0) > ρ

d
, b) |ψe (0)| ≤ ψ̄e <

π
2 , c) |φ (0)| < φ̄ < π

2

and d)|θ (0)| < θ̄ < π
2 for an arbitrarily small positive design

constantρ
d

and some positive constants̄ψe, φ̄, θ̄ satisfying
cot ψ̄e >tφ̄sθ̄.

Remark 6. Assumption 2 guarantees via (a) that the orien-
tation error eo is initially well-defined as well as via (b)-(d)
that (32)-(34) are initially controllable with respect tou, w
and r. First, notice that|ψe (0)| ≤ ψ̄e <

π
2 , |φ (0)| < φ̄ < π

2
and |θ (0)| < θ̄ < π

2 render (34) controllable with respect
to r. Additionally, |θ (0)| < θ̄ < π

2 guarantees that the ve-
hicle initializes away from the representation singularity (i.e.,
θ = ±π

2 ) of the Euler angles’ parameterization. Moreover,
extracting the input gain matrix [38] of (32) and (33):

G (φ, θ, ψe) =

[
−cψecθ − (cψesθcφ + sψesφ)

sθ −cθcφ

]

, (35)

considering as inputs the velocitiesu and w, we can eas-
ily derive a sufficient controllability condition (i.e., whether
G (φ, θ, ψe) is invertible) by observing the determinant of
G (φ, θ, ψe):

det (G (φ, θ, ψe)) = cψecφ + sψesφsθ,

which is initially strictly positive owing to Assumption 2 (i.e.,
cot (|ψe (0)|) ≥ cot ψ̄e >tφ̄sθ̄ >t|φ(0)|s|θ(0)| leads straightfor-
wardly to det (G (φ (0) , θ (0) , ψe (0))) >cψ̄ecφ̄−sψ̄esφ̄sθ̄ >
0). In this respect, we shall design a controller that, besides
guaranteeinged (t) > ρ

d
> 0, ∀t ≥ 0, further forces the

heading angleψe to satisfy |ψe (t)| ≤ ψe < π
2 , ∀t ≥ 0.

Furthermore, since the unactuated roll and pitch degrees of
freedom are passive, the corresponding angles will be proven
to remain bounded close to the origin satisfying|φ (t)| < φ̄
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and |θ (t)| < θ̄, ∀t ≥ 0. Hence, (32)-(34) will remain
controllable (i.e., |ψe (t)| ≤ ψ̄e, |φ (t)| < φ̄, |θ (t)| < θ̄
and det (G (φ (t) , θ (t) , ψe (t))) > 0 , ∀t ≥ 0) and will
evolve away from the representation singularity. Finally,notice
from a practical point of view that Assumption 2 can be
easily enforced by simply placing the vehicle in an initial
configuration that is heading towards the desired trajectory
(target), which is quite reasonable in underwater applications.

Control Scheme:Similarly to the torpedo case, the proposed
control scheme is first derived at the kinematic level assuming
that the control signals are the surge, heave and yaw velocities
u, w, r. Subsequently, the kinematic controller is extended
to the dynamic model, considering the actual control input
signalsX , Z, andN (i.e., forcesX , Z in surge and heave as
well as a torqueN in yaw). Hence, given a smooth desired
trajectorypd (t) = [xd (t) , yd (t) , zd (t)]

T with bounded time
derivatives, and any initial vehicle configuration satisfying
Assumption 2 for an arbitrarily small positive design constant
ρ
d
, the control design proceeds as follows.
Kinematic Controller: Select position/orientation perfor-

mance functionsρd (t), ρz (t), ρo (t) that i) satisfy:

akin ed (0) < ρd (0) ρ
d
< ρd (t) ρ

d
< lim
t→∞

ρd (t)

bkin |ez (0)| < ρz (0) 0 < ρz (t) 0 < lim
t→∞

ρz (t)

ckin |eo (0)| < ρo (0) ≤ ρ̄ < 1 0 < ρo (t) 0 < lim
t→∞

ρo (t)

for a positive constant̄ρ < 1 and ii) incorporate the desired
performance specifications regarding the steady state error
and the speed of convergence (see Subsection I-A2). Subse-
quently, design the desired velocities:

[
ud
wd

]

= − [G (φ, θ, ψe)]
−1














kd ln










1+
ed−

ρd(t)+ρ
d

2
ρd(t)−ρ

d

2

1−
ed−

ρd(t)+ρ
d

2
ρd(t)−ρ

d

2










kz ln

(
1+

ez
ρz(t)

1−
ez
ρz(t)

)














(36)

rd = −ko ln
(

1+
eo
ρo(t)

1−
eo
ρo(t)

)

(37)

whereG (φ, θ, ψe) is the input gain matrix defined in (35) and
kd, kz, ko are positive control gains.

Dynamic Controller: Select velocity performance functions
ρu (t), ρw (t), ρr (t) that satisfy:

adyn |u (0)− ud (0)| < ρu (0) 0 < ρu (t) 0 < lim
t→∞

ρu (t)

bdyn |w (0)− wd (0)| < ρw (0) 0 < ρw (t) 0 < lim
t→∞

ρw (t)

cdyn |r (0) − rd (0)| < ρr (0) 0 < ρr (t) 0 < lim
t→∞

ρr (t)

and design the forces in surge and heave as well as the torque
in yaw as:

X = −ku ln
(

1+
u−ud
ρu(t)

1−
u−ud
ρu(t)

)

(38)

Z = −kw ln

(

1+
w−wd
ρw(t)

1−
w−wd
ρw(t)

)

(39)

N = −kr ln
(

1+
r−rd
ρr(t)

1−
r−rd
ρr(t)

)

(40)

with positive control gainsku, kw, kr.
We now summarize the main results of this subsection in

the following theorem.

Theorem 3. Consider any smooth desired trajectorypd (t) =
[xd (t) , yd (t) , zd (t)]

T with bounded derivatives and a
unicycle-like underactuated underwater vehicle modeled by
(7), (8) and (9)-(14), in any initial configuration satisfying
Assumption 2, for an arbitrarily small positive design constant
ρ
d
. The proposed control scheme (36)-(40) guarantees:

ρ
d
< ed (t) < ρd (t)

−ρz (t) < ez (t) < ρz (t)
−ρo (t) < eo (t) < ρo (t)






, ∀t ≥ 0

for appropriately selected performance functionsρd (t), ρz (t),
ρo (t) that incorporate the desired transient and steady state
performance specifications, and avoids the singularities intro-
duced by the error transformations (30), (31) with bounded
closed loop signals, thus leading to the solution of the robust
prescribed performance tracking control problem as statedin
Subsection II-C.

Proof. See the Appendix.

Remark 7. Initially, based on Assumption 2, the orientation
error eo is well-defined and Eq. (20)-(22) are controllable.
Subsequently, the performance functionsρd (t) and ρo (t) are
selected such that the orientation error is retained well defined
and the controllability of (20)-(22) is preserved as long as
prescribed performance is guaranteed, that isρ

d
< ed (t) <

ρd (t), −ρo (t) < eo (t) < ρo (t), ∀t ≥ 0. Due to property-ckin

(i.e., ρo (t) ≤ ρ̄ < 1) the prescribed performance guarantees
lead to e2o (t) =s2

ψe(t)
= 1−c2

ψe(t)
≤ ρ2o (t) ≤ ρ̄2 and

consequently to|ψe (t)| < ψe = cos−1
(√

1− ρ̄2
)

< π
2 ,

∀t ≥ 0. Furthermore, the passivity of the unactuated degrees
of freedom (i.e., roll and pitch) ensures that|φ (t)| < φ̄ and
|θ (t)| < θ̄, ∀t ≥ 0 for sufficiently smallφ̄, θ̄. Therefore, the
satisfaction of prescribed performance constitutes a sufficient
condition for bypassing the aforementioned singularity issues.

C. Commentary

1) Control Philosophy:The prescribed performance con-
trol technique enforces the normalized position/orientation

errors ξd (t) =
ed−

ρd(t)+ρd
2

ρd(t)−ρd
2

, ξt (t) = et
ρt(t)

, ξo (t) = eo
ρo(t)

(

or ξd (t) =
ed−

ρd(t)+ρd
2

ρd(t)−ρd
2

, ξz (t) = ez
ρz(t)

, ξo (t) = eo
ρo(t)

)

and
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velocity errors ξu (t) = eu
ρu(t)

, ξq (t) =
eq
ρq(t)

, ξr (t) =

er
ρr(t)

(

or ξu (t) = eu
ρu(t)

, ξw (t) = ew
ρw(t) , ξr (t) =

er
ρr(t)

)

, with

eu , u − ud, ew , w − wd, eq , q − qd and er ,

r − rd, to remain strictly within the set(−1, 1) for all
t ≥ 0. Notice that modulatingξi (t), i ∈ {d, t, o, u, q, r} (or

i ∈ {d, z, o, u, w, r}) via the logarithmic functionln
(

1+⋆
1−⋆

)

in the control signals (23)-(28) (or (36)-(40)) and selecting
ρi (0) > |ei(0)|, i ∈ {d, t, o, u, q, r} (or i ∈ {d, z, o, u, w, r}),

the control signalsεi(ξi) = ln
(

1+ξi
1−ξi

)

, i ∈ {d, t, o, u, q, r} (or

i ∈ {d, z, o, u, w, r}) are initially well-defined. Moreover, it is
not difficult to verify that maintaining simply the bounded-
ness of the modulated errorsεi(ξi (t)), i ∈ {d, t, o, u, q, r}
(or i ∈ {d, z, o, u, w, r}) for all t ≥ 0 is equivalent to
guaranteeingξi (t) ∈ (−1, 1), i ∈ {d, t, o, u, q, r} (or i ∈
{d, z, o, u, w, r}) for all t ≥ 0. Therefore, the problem at
hand can be visualized as stabilizing the modulated errors
εi(ξi (t)), i ∈ {d, t, o, u, q, r} (or i ∈ {d, z, o, u, w, r}),
within the feasible regions defined viaξi ∈ (−1, 1), i ∈
{d, t, o, u, q, r} (or i ∈ {d, z, o, u, w, r}) for all t ≥ 0. A
careful inspection of the proposed control scheme (23)-(28) (or
(36)-(40)) reveals that it actually operates similarly to barrier
functions in constrained optimization, admitting high negative
or positive values depending on whethered (t) → ρd (t)
or ed (t) → ρ

d
and ei (t) → ρi (t) or ei (t) → −ρi (t),

i ∈ {t, o, u, q, r} (or i ∈ {z, o, u, w, r}); eventually preventing
ei (t), i ∈ {d, t, o, u, q, r} (or i ∈ {d, z, o, u, w, r}) from
reaching the corresponding boundaries.

2) Structural Complexity:The proposed control schemes do
not incorporate any prior knowledge of the external distur-
bances and the vehicle’s dynamic model parameters or even of
some corresponding upper bounding constants. Furthermore,
no estimation (i.e., adaptive control) has been employed to
acquire such knowledge. Moreover, compared with the tra-
ditional backstepping-like approaches, the proposed schemes
prove significantly less complex. Notice that no hard calcu-
lations are required to output the proposed control signals,
thus making implementation straightforward. Finally, it should
be noted that no velocity measurements of the unactuated
degrees of freedom (i.e., sway-heave-roll and sway-roll-pitch
velocities for the torpedo-like and unicycle-like underactuated
vehicles respectively) are incorporated in the control schemes,
thus greatly increasing the robustness against noises that
corrupt the specific measurements and simplifying further the
implementation.

3) Robust Prescribed Performance:It is worth noticing
that the proposed control schemes achieve their goals without
residing to the need of renderingεi (t), i ∈ {d, t, o, u, q, r}
(or i ∈ {d, z, o, u, w, r}) arbitrarily small, through extreme
values of the control gainski, i ∈ {d, t, o, u, q, r} (or
i ∈ {d, z, o, u, w, r}). More specifically, notice that (51)-
(55) and (59) hold no matter how large the finite bounds
ε̄i, i ∈ {d, t, o, u, q, r} and i ∈ {d, z, o, u, w, r} are. In the
same spirit, large model uncertainties, either in the vehicle
parameters or the external disturbances, can be compensated,
as they affect only the size of̄εi, i ∈ {d, t, o, u, q, r} and
i ∈ {d, z, o, u, w, r}, but leave the achieved stability properties

unaltered as shown in (51)-(55) and (59). Hence, the actual
tracking performance given in Theorem 2 and Theorem 3,
which is solely determined by the designer-specified perfor-
mance functionsρi (t), i ∈ {d, t, o} andi ∈ {d, z, o}, becomes
isolated against model uncertainties, thus greatly extending the
robustness of the proposed control schemes.

4) Control Parameters Selection:Unlike what is common
practice in the related literature, the performance of the closed
loop system is explicitly and solely determined by appropri-
ately selecting the parameterρ

d
and the position/orientation

performance functionsρi (t), i ∈ {d, t, o, } (or i ∈ {d, z, r}).
In particular, the decreasing rate ofρi (t), i ∈ {d, t, o, }
(or i ∈ {d, z, r}) introduces directly a lower bound on the
speed of convergence of the corresponding position/orientation
errors. Furthermore,ρ

d
and limt→∞ ρi (t), i ∈ {d, t, o, }

(or i ∈ {d, z, r}) regulate the maximum allowable size of
the position/orientation errors at steady state. In that respect,
the performance attributes of the proposed control schemes
are selected a priori, in accordance to the desired transient
and steady state performance specifications. In this way, the
selection of the control gainski, i ∈ {d, t, o, u, q, r} (or
i ∈ {d, z, o, u, w, r}), that has been isolated from the actual
control performance, is significantly simplified to adopting
those values that lead to reasonable control effort. Nonethe-
less, it should be noted that their selection affects both the
quality of evolution of the position/orientation errors inside
the corresponding performance envelopes as well as the
control input characteristics (i.e., decreasing the gain values
leads to increased oscillatory behaviour within the prescribed
performance envelopes, which is improved when adopting
higher values, enlarging, however, the control effort bothin
magnitude and rate). Additionally, fine tuning might be needed
in real-time scenarios, to retain the required control input
signals within the feasible range that can be implemented by
the actuators. Similarly, the control input constraints impose
an upper bound on the required speed of convergence of
the position/orientation performance functions as well ason
the uncertainty level, either from the model or the external
disturbances, that can be handled by the proposed control
schemes. Hence, the selection of the control gainski, i ∈
{d, t, o, u, q, r} (or i ∈ {d, z, o, u, w, r}) can have positive in-
fluence on the overall closed loop system response. In the same
spirit, although performance specifications are not required for
the velocity errors, the selection of the corresponding velocity
performance functionsρi (t), i ∈ {u, q, r} (or i ∈ {u,w, r})
affects both the evolution of the position errors within the
corresponding performance envelopes as well as the control
input characteristics (i.e., relaxing the convergence rate and the
steady state limit of the velocity performance functions leads
to increased oscillatory behavior, which is improved when
considering tighter performance functions, enlarging, however,
the control effort both in magnitude and rate). Nevertheless,
the only hard constraint attached to their definition is related
to their initial values.

5) Minimal Tracking Information:Interestingly, the pro-
posed control schemes are independent of the time derivatives
of pd (t) = [xd (t) , yd (t) , zd (t)]

T . Regarding the torpedo-
like (or unicycle-like) underactuated vehicles, the desired
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velocitiesud, qd, rd (or ud, wd, rd) depend only onpd (t) =
[xd (t) , yd (t) , zd (t)]

T . However,u̇d, q̇d, ṙd (or u̇d, ẇd, ṙd)
which involve ṗd (t) = [ẋd (t) , ẏd (t) , żd (t)]

T , are proven
bounded and therefore, we do not compensate for them
through the design of the control signalsX , M , N (or X ,
Z, N ). Thus, applications where the desired trajectory is
not a priori known for all time but it is computed on-line
(e.g., tracking a moving target where the desired trajectory
- target position - is obtained at each time instant via a
measuring device and is unknown before hand) and thus its
time derivatives are not available (numerical differentiation
typically does not help in this direction since it may introduce
large errors), can be successfully and efficiently tackled.

IV. SIMULATIONS

To demonstrate the proposed approach and point out its
intriguing performance properties with respect to existing
results in the related literature, a comparative simulation study
with the well-established PID control law was conducted
for an underwater pipeline inspection task under external
disturbances representing ocean currents and waves. More
specifically, we considered the tracking control problem of
a multi-sector trajectory along a complex pipeline structure,
involving line and curved segments as well as vertical and
horizontal helixes, for a torpedo-like underactuated underwater
vehicle.

The dynamics of a 6 DoF model (the parameters of the
dynamic model were found in [39]) and the motion control
scheme was simulated in UWSim [40], a realistic simulation
environment developed in the Robot Operating System (ROS)
framework, using a4-th order Runge-Kutta integration method
with 1 ms time step. The vehicle initialized at rest from the
configurationx (0) = −38.0 m, y (0) = −9.1 m, z (0) = 27.8
m, R (0) = diag ([−1,−1, 1]) and was requested to track
a multi-sector trajectory along the pipeline with maximum
steady state position error0.3 m and minimum convergence
rate as obtained by the exponentialexp (−0.1t). Additionally,
we considered that the vehicle’s motion was affected by
external disturbances representing a constant ocean current of
the form δx (t) = −0.25 m/s, δy (t) = 0.25 m/s, δz (t) = 0
m/s (the direction of the ocean stream is depicted in Fig. 5 with
green arrows) and harmonic waves modeled by three random
sinusoids with amplitude and frequency equally distributed in
[0.1, 1] N (for the translational dynamics),[0.1, 1] Nm (for the
rotational dynamics) and[0.01, 0.1] rad/s respectively.

Given the initial configuration of the vehicle as well
as the required performance specifications and following
Subsections III-A and III-C, we selected the performance
functions ρd (t) = (6.0− 0.3) exp (−0.1t) + 0.3, ρt (t) =
(0.6− 0.1) exp (−t) + 0.1, ρo (t) = (0.6− 0.1) exp (−t) +
0.1, ρu (t) = (2− 0.1) exp (−1.5t) + 0.1, ρq (t) =
(2− 0.1) exp (−1.5t)+ 0.1, ρr (t) = (2− 0.1) exp (−1.5t)+
0.1 and the control gainskd = 10, ko = 2, kt = 2, ku = 100,
kq = 20, kr = 20 such that (23)-(28) yield reasonable control
effort. Furthermore, it should be noticed that Assumption 1
is satisfied by the aforementioned initial configuration for
ρ
d
= 0.1. Finally, a fair comparison with the PID controller

t = 0 sec t = 115 sec

t = 280 sec t = 450 sec

x
y

z

Fig. 5: Simulation: The trace of the vehicle (blue line) along with the desired
trajectory (green line).
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Fig. 6: Simulation: The tracking error evolution. The red dashed lines indicate
the desired performance bounds. The blue and green solid lines indicate the
evolution ofed(t) for the proposed and the PID control schemes respectively.

was achieved by setting appropriately its gains, following
the pole placement method, in order to achieve the desired
performance specifications, based on a realistic case, where
the model parameters, that were adopted in the approximate
linearization technique, deviated up to 10% from their actual
values.

The trajectory tracking of the proposed scheme is shown
in Fig. 5 for 4 consecutive time instants. The distance error
of both the proposed scheme and the PID controller along
with the desired performance bounds are pictured in Fig. 6.
The evolution of the orientation errors under the proposed
control law along with the corresponding performance bounds
is depicted in Fig. 7. Finally, the body velocities and the
requested control effort under the proposed scheme are given
in Figs. 8 and 9 respectively. Notice that as it was predictedby
the theoretical analysis, tracking with prescribed performance
and bounded control signals is achieved despite the presence
of external disturbances and the lack of knowledge of the
vehicle’s dynamic model parameters. On the contrary, although
the response of the PID controller, as observed in Fig. 6,
was quite satisfactory during the transient and along the line
segments of the desired trajectory, where the linearization is
rather accurate, it should be noted that the error increased
up to almost1.5 m with a quite unsatisfactory response
during the helical segments, where the linearization was not
adequate, owing to the large operating envelope and the
system uncertainty. In this way, it is verified that the proposed
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(X), pitch (M ) and yaw (N ).

scheme outperforms the well-established PID controller in
challenging operating conditions, that are commonly met in
underwater applications. An accompanying video demonstrat-
ing the aforementioned simulation study may be found in
https://youtu.be/2cNN3ksPjd4.

V. EXPERIMENT

To verify the tracking performance and robustness of the
proposed scheme, an experimental procedure was carried out
inside a water tank using a small remotely operated underwater
vehicle. The deployed vehicle VideoRay PRO is equipped with
three thrusters, affecting surge-heave-yaw motions (i.e., it falls
within the class of unicycle-like underactuated vehicles)and
its control unit is connected with a host computer through
a serial communication interface (RS-232). Additionally,a
Polhemus-Isotrack device, interfaced to the host computervia
RS-232 serial communication at30 Hz, was employed as a
pose feedback sensor for the motion control scheme. The
Isotrak tracking system consists of a transmitter and a receiver
(tracker) and uses electro-magnetic fields to determine the
tracker’s position/orientation. In our case, the transmitter was
placed at a fixed spot outside the water tank and the tracker
was mounted on the vehicle. Finally, the overall software
architecture was developed in C++ on a Linux operating
system.

Fig. 10: Experiment: The trace of the vehicle (blue line) along with the desired
trajectory (red line).

The vehicle initialized at rest from the configurationx (0) =
0.22 m, y (0) = 0.76 m, z (0) = 0.27 m, φ (0) = 0.1◦,
θ (0) = 1.2◦ andψ (0) = −94.59◦ and was requested to track
a helical trajectory towards the bottom of the tank described
by xd (t) = 0.4 cos (0.1πt) m, yd (t) = −0.4 sin (0.1πt)
m, zd (t) = 0.3 + 0.015t m, with maximum steady state

error 0.2 m and minimum convergence rate as obtained by
the exponentialexp (−0.25t). Notice that the aforementioned
initial configuration satisfied Assumption 2 forρ

d
= 0.05.

Hence, following Subsection III-B, we selected the perfor-
mance functions:

ρd (t) = (2.0− 0.15) exp (−0.25t) + 0.15
ρz (t) = (0.5− 0.05) exp (−0.25t) + 0.05
ρo (t) = (0.8− 0.08) exp (−0.25t) + 0.08
ρu (t) = (2− 0.5) exp (−0.25t) + 0.5
ρw (t) = (2− 0.5) exp (−0.25t) + 0.5
ρr (t) = (2− 0.5) exp (−0.25t) + 0.5

and the control gainskd = 0.3, kz = 1, ko = 1, ku = 7.5,
kw = 5.0, kr = 0.25 such that (36)-(40) yield reasonable
control effort.

The trace of the vehicle along with the desired trajectory
is illustrated in Fig. 10. As it was predicted by the theo-
retical analysis and is actually depicted in Figs. 11 and 12,
stable tracking with prescribed performance is successfully
achieved, with the errors evolving strictly within the predefined
performance bounds, despite the lack of knowledge regarding
the vehicle’s dynamic model parameters. Additionally, as it is
pictured in Fig. 13 the required control effort was satisfactorily
smooth and did not impose any saturation to the thrusters (the
limits of the considered vehicle for theX , Z andN degrees
of actuation are15 N, 7.5 N and1 Nm respectively).

The existing setup did not allow us to create external
disturbances in the form of waves and currents. However,
the power & communication tether attached to the vehicle,
was creating non-trivial external disturbances in the formof
random forces and torques, as the vehicle was constantly
changing configuration during the experiment. As it can be
seen from Fig. 11 and the overall performance of the con-
troller, the aforementioned external disturbances were rejected
successfully, thus verifying the efficiency and robustnessof the
proposed control scheme. The aforementioned experimental
study is demonstrated in the accompanying video.

VI. CONCLUSIONS

This paper proposed a solution for the 3D trajectory tracking
control problem for torpedo-like and unicycle-like under-
actuated underwater vehicles. The derived control schemes
guarantee tracking with prescribed transient and steady state
performance despite the presence of external disturbancesand
without requiring prior information of the vehicle’s model
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parameters. Moreover, no velocity measurement of the un-
actuated degrees of freedom is needed, thus increasing its
robustness against noises that corrupt the corresponding mea-
surements. Furthermore, only the desired trajectory and none
of its higher order derivatives is incorporated in the control
scheme. Additionally, the proposed control schemes are of
low complexity and avoid both controllability and represen-
tation singularities that appear inherently during the control
design procedure. Finally, simulation and experimental results
clarified and verified the proposed approach.

Future research directions will be devoted towards studying
the effect of: i) input uncertainties (i.e., mapping uncertain-
ties between desired body forces/torques and actuator com-
mands) andconstraints (e.g., the thruster limitations as well as
in case of torpedo-like vehicles with stern fins, the coupling of
pitch and yaw control input torques with the surge velocity via
(15)) as well as ii)sensor filtering (underwater localization is
mainly based on acoustic sensors, which however are plagued
with noise, intermittent failures and latency) on the closed loop
stability, in order to increase the applicability of the proposed
control methodologies in open sea scenarios. Extra attention
should also be devoted on studying how the achieved transient
and steady state performance specifications could encapsulate
further configuration constraints that may arise owing to the
limited capabilities of on board sensors (e.g., the limitedfield
of view of cameras or sonars) that may be adopted to track the
desired target. Such a property would be quite significant es-
pecially in high-demanding inspection and surveillance tasks,
where the target must always be kept inside the sensor’s field
of view. Moreover, introducing the Cartesian error representa-
tion instead of the spherical/polar that is adopted in this work
might lead to simpler error dynamics and avoid singularities,
thus yielding even more reduced design complexity. Finally,
the increasingly challenging mission scenarios in the fieldof
marine robotics, ranging from exploration and surveillance to
seabed mapping and reconnaissance call for inexpensive and
robust control solutions. Thus, the extension of the intrinsic
properties of the proposed methodologies to a fleet of multiple
cooperating underwater vehicles should also be addressed.

APPENDIX

Proof of Theorem 2

Let us define the normalized errors:

ξd =
ed−

ρd(t)+ρd
2

ρd(t)−ρd
2

, ξt = et
ρt(t)

, ξo = eo
ρo(t)

, (41)

ξu = u−ud
ρu(t)

, ξq =
q−qd
ρq(t)

, ξr =
r−rd
ρr(t)

. (42)

In this respect, the desired velocities (23)-(25) and the control
law (26)-(28) may be written as functions of the normalized
errorsξi, i ∈ {d, t, o, u, q, r} as follows:

ud = kd ln
(

1+ξd
1−ξd

)

, qd = −kt ln
(

1+ξt
1−ξt

)

, rd = ko ln
(

1+ξo
1−ξo

)

,

(43)

X = −ku ln
(

1+ξu
1−ξu

)

, M = −kq ln
(

1+ξq
1−ξq

)

, N = −kr ln
(

1+ξr
1−ξr

)

.

(44)

Let us now define the overall state vector:

ξ =
[
ξd, ξo, ξt, ξu, ξq, ξr, s

T
]T

,

wheres = [v, w, p]
T denotes the unactuated velocities (i.e.,

sway, heave and roll velocities). Differentiating the normalized
errors (41), (42) with respect to time and substituting (9)-(14),
(20)-(22) as well as (43), (44), we obtain in a compact form,
the closed loop dynamical system:

ξ̇ = h (t, ξ) (45)

where the functionh (t, ξ) includes all terms found in the
right hand side5, after the differentiation ofξ. Let us also
define the setΩξ = (−1, 1)× · · · × (−1, 1)

︸ ︷︷ ︸

6-times

×Ωs, whereΩs =

{
s ∈ ℜ3 : ‖s‖ < s̄

}
is an open set with̄s denoting a positive

constant to be specified later, for analysis purposes only.

5Notice that the time argument ofh (t, ξ) encapsulates implicitly the
effect of the desired trajectorypd (t), the performance functionsρi (t),
i ∈ {d, o, t, u, q, r} and the external disturbance termsδc (t) and δi (t),
i ∈ {u, v, w, p, q, r} on the closed loop system dynamics.



13

In the sequel, we proceed in two phases. First, the existence
and uniqueness of a maximal solutionξ (t) of (45) over the set
Ωξ for a time interval[0, τmax) is ensured (i.e.,ξ (t) ∈ Ωξ,
∀t ∈ [0, τmax)). Then, we prove that the proposed control
scheme guarantees, for allt ∈ [0, τmax): a) the boundedness of
all closed loop signals of (45) as well as that b)ξ (t) remains
strictly within a compact subset ofΩξ, which subsequently
will lead to τmax = ∞ by contradiction and consequently
to the solution of the tracking control problem stated in
Subsection II-C. Moreover, notice that the design parameter
ρ
d

and the performance functionsρd (t), ρt (t), ρo (t) were
selected (see Subsection III-A) such that no singular point
lies in Ωξ (i.e., ed > ρ

d
> 0 and |θn| ≤ θ̄n < π

2 ,
∀ξ ∈ Ωξ). In this respect, the proposed scheme avoids the
singularity issues mentioned in Subsection III-A, which have
been the main drawbacks in similar control approaches for
underactuated underwater vehicles, via guaranteeing thatξ (t)
remains strictly within a compact subset ofΩξ.

Phase A.The setΩξ is nonempty and open. Moreover,
owing to the selection of the performance functionsρi (t),
i ∈ {d, t, o, u, q, r} as well as to Assumption 1, we conclude
thatξ (0) ∈ Ωξ for a positive constant̄s satisfying‖s (0)‖ < s̄.
Additionally, due to the smoothness of: a) the system nonlin-
earities, b) the desired trajectory and c) the proposed control
scheme overΩξ, it can be easily verified thath (t, ξ) is
continuous ont and continuous for allξ ∈ Ωξ. Therefore,
the hypotheses of Theorem 1 stated in Subsection I-A3 hold
and the existence and uniqueness of a maximal solutionξ (t)
of (45) on a time interval[0, τmax) such thatξ (t) ∈ Ωξ,
∀t ∈ [0, τmax) is ensured.

Phase B.We have proven in Phase A thatξ (t) ∈ Ωξ, ∀t ∈
[0, τmax) or equivalently that:

ξi (t) ∈ (−1, 1) , i ∈ {d, t, o, u, q, r} (46)

and |s (t)| < s̄ for all t ∈ [0, τmax). Therefore, the signals:

εi (t) = ln
(

1+ξi(t)
1−ξi(t)

)

, i ∈ {d, t, o, u, q, r} (47)

are well defined for allt ∈ [0, τmax). Consider now the
positive definite and radially unbounded functionVd = 1

2ε
2
d.

Differentiating with respect to time and substituting (20), we
obtain:

V̇d = 4εd

(1−ξ2d)(ρd(t)−ρd)
(−ucθn − vcθo − wcθt

+
ex(ẋd−δx)+ey(ẏd−δy)+ez(żd−δz)

ed
− (1+ξd)ρ̇d(t)

2

)

. (48)

Incorporatingu = ud+ξuρu (t) from (42) and substitutingud
from (43) andεd from (47), V̇d becomes:

V̇d = 4εd

(1−ξ2d)(ρd(t)−ρd)
(−ξuρu (t) cθn − vcθo − wcθt

+
ex(ẋd−δx)+ey(ẏd−δy)+ez(żd−δz)

ed
− (1+ξd)ρ̇d(t)

2
− kdεdcθn

)

.

Furthermore, utilizing: i) (46), ii) the fact thaṫρd (t), ρu (t),
ẋd (t), ẏd (t), żd (t), δx (t), δy (t), δz (t) are bounded by

construction and by assumption and iii)‖s (t)‖ < s̄, we arrive
at:

|−ξuρu (t) cθn − vcθo − wcθt

+
ex(ẋd−δx)+ey(ẏd−δy)+ez(żd−δz)

ed
− (1+ξd)ρ̇d(t)

2

∣

∣

∣

∣

≤ ρu (0) + s̄+ sup
t≥0







∥

∥

∥

∥

∥

∥

ẋd (t)− δx (t)
ẏd (t)− δy (t)
żd (t)− δz (t)

∥

∥

∥

∥

∥

∥

+ |ρ̇d (t)|







:= F̄d,

(49)

for an unknown positive constant̄Fd. Moreover, 1

(1−ξ2d)
> 1

and as mentioned earlier cθn ≥cθ̄n > 0 andρd (t) − ρ
d
> 0.

Therefore, we conclude thaṫVd is negative when|εd (t)| >
F̄d

kdcθ̄n
and consequently that:

|εd (t)| ≤ ε̄d = max
{

|εd (0)| , F̄d
kdcθ̄n

}

, (50)

for all t ∈ [0, τmax), which from (47), by applying the inverse
logarithmic function, leads to:

−1 < exp(−ε̄d)−1
exp(−ε̄d)+1 = ξd ≤ ξd (t) ≤ ξd =

exp(ε̄d)−1
exp(ε̄d)+1 < 1 (51)

for all t ∈ [0, τmax). Hence, the desired velocityud also re-
mains bounded (i.e.,|ud (t)| ≤ kdε̄d) for all t ∈ [0, τmax). Fur-
thermore, following similar analysis for (21) and (22) withthe
positive definite and radially unbounded functionsVt = 1

2ε
2
t ,

Vo =
1
2ε

2
o, we arrive at|εt (t)| ≤ ε̄t = max

{

|εt (0)| , F̄t
ktcθ̄n

}

,

|εo (t)| ≤ ε̄o = max
{

|εo (0)| , F̄o
kocθ̄n

}

, ∀t ∈ [0, τmax) for

some positive constants̄Fo, F̄t satisfying similar inequalities
to (49), which further lead to:

−1 < exp(−ε̄d)−1
exp(−ε̄d)+1 = ξt ≤ ξt (t) ≤ ξt =

exp(ε̄d)−1
exp(ε̄d)+1 < 1 (52)

−1 < exp(−ε̄d)−1
exp(−ε̄d)+1 = ξo ≤ ξo (t) ≤ ξo =

exp(ε̄d)−1
exp(ε̄d)+1 < 1. (53)

Moreover, the desired velocitiesqd, rd remain bounded as well
(i.e., |qd (t)| ≤ ktε̄t, |rd (t)| ≤ koε̄o, ∀t ∈ [0, τmax)). Thus,
invoking (42), it is straightforward to deduce the boundedness
of u (t), q (t), r (t) (i.e., |u (t)| ≤ ū := ρu (0)+kdε̄d, |q (t)| ≤
q̄ := ρq (0)+ktε̄t, |r (t)| ≤ r̄ := ρr (0)+koε̄o, ∀t ∈ [0, τmax))
and consequently, by differentiating (43) with respect to time
and after some straightforward algebraic manipulations, the
boundedness oḟud (t), q̇d (t), ṙd (t), ∀t ∈ [0, τmax).

Applying the aforementioned line of proof for the dynamics
of the velocity errorsεu, εq, εr defined in (47), that involve
the dynamic model of the vehicle (9)-(14), consideringVu =
1
2muε

2
u, Vq = 1

2mqε
2
q, Vr =

1
2mrε

2
r and the proposed control

law (26)-(28), we conclude that:

|εi (t)| ≤ ε̄i = max
{

|εi (0)| , F̄iki
}

, ∀t ∈ [0, τmax) (54)

for some positive constants̄Fi, i ∈ {u, q, r} that satisfy similar
inequalities to (49) relating the performance specifications, the
unknown parameters of the dynamic model and the external
wave disturbances. Accordingly, we arrive at:

−1 < exp(−ε̄i)−1
exp(−ε̄i)+1 = ξi ≤ ξi (t) ≤ ξi =

exp(ε̄i)−1
exp(ε̄i)+1 < 1 (55)
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for all t ∈ [0, τmax) and i ∈ {u, q, r}, as well as at the
boundedness of the control law (26)-(28) for allt ∈ [0, τmax)
(i.e., |X (t)| ≤ kuε̄u, |M (t)| ≤ kq ε̄q, |N (t)| ≤ kr ε̄r).

In the sequel, special attention will be paid on the stability
of the unactuated velocity vectors = [v, w, p]

T . In this way,
let us define the positive definite and radially unbounded
function Vvwp = 1

2s
Tdiag ([mv,mw,mp]) s wheremv, mw,

mp denote the vehicle’s mass/moment of inertia and added
mass/moment of inertia of the corresponding degrees of free-
dom. DifferentiatingVvwp with respect to time and substituting
(10)-(12), we obtain:

V̇vwp = s
Tdiag(

[

Yv + Y|v|v |v| , Zw + Z|w|w |w| ,Kp +K|p|p |p|
]

)s

+ s
T





−muur + δv (t)
muuq + δw (t)

mqrqr + zBW cθsφ + δp (t)



 ,

which, after straightforward algebraic manipulations, leads to:

V̇vwp ≤ − α√
3
‖s‖3 − β ‖s‖2 + Fvwp ‖s‖ ,

where α , min
{∣
∣Y|v|v

∣
∣ ,
∣
∣Z|w|w

∣
∣ ,
∣
∣K|p|p

∣
∣
}

, β ,

min {|Yv| , |Zw| , |Kp|} and

Fvwp :=

∥

∥

∥

∥

∥

∥

muūr̄ + supt≥0 {|δv (t)|}
muūq̄ + supt≥0 {|δw (t)|}

mqr q̄r̄ + |zB |W + supt≥0 {|δp (t)|}

∥

∥

∥

∥

∥

∥

≥

∥

∥

∥

∥

∥

∥

−muur + δv (t)
muuq + δw (t)

mqrqr + zBW cθsφ + δp (t)

∥

∥

∥

∥

∥

∥

.

Therefore, we conclude thaṫVvwp is negative when

‖s‖ > S :=

√

(√
3β

2α

)2

+
√

3Fvwp
α

−
√

3β
2α

and consequently thats (t) ∈ Ω
′

s , ∀t ∈ [0, τmax), where:

Ω
′

s =

{

s ∈ ℜ3 : ‖s‖ ≤ s̄
′

:= max

{

‖s (0)‖ , S

min{mv ,mw,mp}

}}

(56)

is a compact set the size of which depends on: i) the control
gain valueskd, kt, ko, ii) the control parametersρu (0),
ρq (0), ρr (0), iii) the parameters of the dynamic model (9)-
(14), iv) the magnitude of the external disturbances as well
as v) implicitly on the desired trajectory and the transient
performance specifications.

Up to this point, what remains to be shown is thattmax =
∞. Notice that (51)-(53), (55) and (56) imply thatξ (t) ∈ Ω

′

ξ,
∀t ∈ [0, τmax), where:

Ω
′

ξ =
∏

i∈{d,t,o,u,q,r}

[
exp(−ε̄i)−1
exp(−ε̄i)+1 ,

exp(ε̄i)−1
exp(ε̄i)+1

]

× Ω
′

s

is a nonempty and compact set. Moreover, it can be easily
verified thatΩ

′

ξ ⊂ Ωξ for certain, sufficient small6 control

6Depending on the transient performance specifications, thevalues of
the parameters of the dynamic model and the magnitude of the external
disturbances.

gain valueskd, kt, ko and parametersρu (0), ρq (0), ρr (0)
satisfying s̄

′

< s̄. Hence, assumingτmax < ∞ and since
Ω

′

ξ ⊂ Ωξ, Proposition 1 in Subsection I-A3 dictates the exis-

tence of a time instantt
′ ∈ [0, τmax) such thatξ

(

t
′

)

/∈ Ω
′

ξ,
which is a clear contradiction. Therefore,τmax = ∞. As a
result, all closed loop signals remain bounded and moreover
ξ (t) ∈ Ω

′

ξ ⊂ Ωξ, ∀t ≥ 0. Finally, from (41) and (51)-(53),
we conclude that:

ρ
d
<

exp(−ε̄d)−1
exp(−ε̄d)+1

ρd(t)−ρd
2

+
ρd(t)+ρd

2

≤ ed (t) ≤

exp(ε̄d)−1
exp(ε̄d)+1

ρd(t)−ρd
2

+
ρd(t)+ρd

2
< ρd (t)

−ρt (t) <
exp(−ε̄t)−1
exp(−ε̄t)+1

ρt (t) ≤ et (t) ≤
exp(ε̄t)−1
exp(ε̄t)+1

ρt (t) < ρt (t)

−ρo (t) <
exp(ε̄o)−1
exp(ε̄o)+1

ρo (t) ≤ eo (t) ≤
exp(ε̄o)−1
exp(ε̄o)+1

ρo (t) < ρo (t)

for all t ≥ 0 and consequently the solution of the robust
prescribed performance tracking control problem as statedin
Subsection II-C, which completes the proof.

Proof of Theorem 3

The proof of this theorem proceeds similarly to Theorem 2.
First, we define the normalized errors:

ξd =
ed−

ρd(t)+ρ
d

2
ρd(t)−ρ

d

2

, ξz = ez
ρz(t)

, ξo = eo
ρo(t)

,

ξu = u−ud
ρu(t)

, ξw = w−wd
ρw(t) , ξr = r−rd

ρr(t)
,

(57)

as well as the overall state vector:

ξ =
[
ξd, ξz , ξo, ξu, ξw, ξr, s

T
]T

,

wheres = [v, φ, p, θ, q]T denotes the state of the unactuated
degrees of freedom (i.e., sway, roll and pitch). Differentiating
the normalized errors in (57) with respect to time and substi-
tuting (9)-(14), (32)-(34) as well as the control scheme (36)-
(40), we obtain in a compact form, the closed loop dynamical
system:

ξ̇ = h (t, ξ) (58)

where the functionh (t, ξ) includes all terms found in the
right hand side after the differentiation ofξ. Let us also define
the open setΩξ = (−1, 1)× · · · × (−1, 1)

︸ ︷︷ ︸

6-times

×Ωs, whereΩs =

{
s ∈ ℜ5 : ‖s‖ < s̄

}
is an open set with̄s denoting a positive

constant to be specified later for analysis purposes only.
Following the line of proof of Theorem 2 for the signals

εi (t) = ln
(

1+ξi(t)
1−ξi(t)

)

, i ∈ {d, z, o, u, w, r}, we conclude for

all time t ∈ [0, τmax) of the maximal solutionξ (t) of the
closed loop system (58) that:

|εi (t)| ≤ ε̄i := max
{
|εi (0)| , F̄i

}
, i ∈ {d, z, o, u, w, r} ,

where F̄i, i ∈ {d, z, o, u, w, r} denote unknown positive
constants that depend on the control gains, the desired trajec-
tory, the performance specifications, the unknown parameters
of the dynamic model and the external disturbances. Subse-
quently, we deduce the boundedness ofu (t), w (t), r (t) (i.e.,
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|u (t)| ≤ ū := ρu (0) + kdε̄d, |w (t)| ≤ w̄ := ρw (0) + kz ε̄z,
|r (t)| ≤ r̄ := ρr (0) + koε̄o) as well as of the control
signals (38)-(40) (i.e.,|X (t)| ≤ kuε̄u, |Z (t)| ≤ kw ε̄w,
|N (t)| ≤ kr ε̄r) for all t ∈ [0, τmax). Moreover, applying the
inverse logarithmic function, we obtain:

−1 < exp(−ε̄i)−1
exp(−ε̄i)+1 = ξi ≤ ξi (t) ≤ ξi =

exp(ε̄i)−1
exp(ε̄i)+1 < 1 (59)

for all i ∈ {d, z, o, u, w, r}. Finally, linearizing around the
origin the dynamics of the unactuated degrees of freedoms

defined in (8), (10), (12) and (13), we obtain:

ṡ = As+ g (t, s, u, w, r)

where

A = diag

(

Yv
mv

,

[

0 1
zBW
mp

Kp
mp

]

,

[

0 1
zBW
mq

Mq

mq

])

and g (t, s, u, w, r) is a perturbation term, that is continuous
in t and locally Lipschitz ins, u, w, r on Ωs, Ωu =
{u ∈ ℜ : |u| ≤ ū}, Ωw = {w ∈ ℜ : |w| ≤ w̄} and Ωr =
{r ∈ ℜ : |r| ≤ r̄}. Notice that the model parametersYv, Kp,
Mq, zB are negative whereasmv, mp, mq, W are positive.
Hence, the diagonal elements ofA are Hurwitz matrices.
Therefore,A is also a Hurwitz matrix and consequently, owing
to the Lyapunov equation, there exist positive definite matrices
P , Q such thatPA + ATP = −Q. Moreover, owing to
the boundedness of the disturbance termsδv (t), δp (t) and
δq (t) for all t ≥ 0 and the fact thatΩs, Ωu, Ωw and
Ωr are compact sets, the application of the Extreme Value
Theorem guarantees the existence of a positive constantḡ,
independent ofτmax, such that‖g (t, s, u, w, r)‖ ≤ ḡ, for all
(t, s, u, w, r) ∈ [0, τmax)×Ωs×Ωu×Ωw×Ωr. Thus, adopting
the positive definite functionVs = 1

2s
TPs and invoking [41]

(Theorem 4.10 in p. 202), we conclude thats (t) ∈ Ω
′

s ,
∀t ∈ [0, τmax), where:

Ω
′

s =







s ∈ ℜ3 : ‖s‖ ≤ s̄
′

:= max







‖s (0)‖ ,
ḡ
√

λmax(P )
λmin(P )

λmin (Q)













(60)

is a compact set, the size of which depends on: i) the control
gain valueskd, kz , ko, ii) the control parametersρu (0),
ρw (0), ρr (0), iii) the magnitude of the external disturbances,
iv) the desired trajectory and v) the transient performance
specifications, that all affect the size ofḡ as well as on vi)
the parameters of the dynamic model (9)-(14) that affect the
positive definite matricesP andQ.

Notice also that (59) and (60) imply thatξ (t) ∈ Ω
′

ξ :=
∏

i∈{d,z,o,u,w,r}

[
e−ε̄i−1
e−ε̄i+1 ,

eε̄i−1
eε̄i+1

]

×Ω
′

s, ∀t ∈ [0, τmax). Moreover,

it can be easily verified thatΩ
′

ξ ⊂ Ωξ for certain, sufficient
small control gain valueskd, kz, ko and parametersρu (0),
ρw (0), ρr (0) satisfyings̄

′

< s̄, which based on Proposition 1
further dictatesτmax = ∞. As a result, all closed loop signals
remain bounded and moreoverξ (t) ∈ Ω

′

ξ ⊂ Ωξ, ∀t ≥ 0.
Finally, from (59), we conclude that:

ρ
d
<

exp(−ε̄d)−1
exp(−ε̄d)+1

ρd(t)−ρd
2

+
ρd(t)+ρd

2

≤ ed (t) ≤

exp(ε̄d)−1
exp(ε̄d)+1

ρd(t)−ρd
2

+
ρd(t)+ρd

2
< ρd (t)

−ρz (t) <
exp(−ε̄z)−1
exp(−ε̄z)+1

ρz (t) ≤ ez (t) ≤
exp(ε̄z)−1
exp(ε̄z)+1

ρz (t) < ρz (t)

−ρo (t) <
exp(−ε̄o)−1
exp(−ε̄o)+1

ρo (t) ≤ eo (t) ≤
exp(ε̄o)−1
exp(ε̄o)+1

ρo (t) < ρo (t)

for all t ≥ 0 and consequently the solution of the robust
prescribed performance tracking control problem as statedin
Subsection II-C, which completes the proof.
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