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Abstract— This paper proposes a low-complexity feedback
control law that is updated aperiodically, in an event-triggered
manner, and guarantees prescribed transient and steady state
performance for uncertain nonlinear systems affine in the
control. By prescribed performance, we mean that the closed-
loop error trajectory converges to a predefined arbitrarily
small residual set, with convergence rate no less than a
certain prespecified value, having maximum overshoot less
than a preassigned level. The proposed novel control design
is performed in the transformed normalized error, and the
triggering mechanism is extracted by guaranteed that these
errors always lead to bounded closed loop signals. Moreover,
the approach provides a scheme of designing and tuning the
control parameters in order to achieve stabilization in a desire
state in a pre-defined time T > 0. The efficiency of the proposed
approach is verified with numerical simulations in MATLAB.

I. INTRODUCTION

It is known that many engineering applications are mod-
eled as uncertain nonlinear dynamical systems. During the
past decades, controlling such systems with feedback con-
trollers have gain significant research attention due to im-
portant applications in automation industry, robotics, au-
tonomous driving, system biology etc [1]–[4].

Out of the vast majority feedback laws in the literature,
a promising category are the model free controllers that can
guarantee predefined transient and steady state performance
specification (see Fig. 1). Moreover, they have been proven
a powerful strategy of controlling nonlinear systems, due
to the fact that have low complexity and the controlability
assumptions are the minimal [5]–[7]. The main idea of
Prescribed Performance control (PPC) is to achieve through
an error transformation, a control behavior such that the error
signal remains within a predefined funnel as specified by
user-defined time decaying functions, with both transient and
steady-state characteristics to be a priori designed. However,
prescribed performance control laws have usually addressed
in the literature with periodic sampling. From a resource
allocation perspective, periodic sampling is sometimes not
preferable in that executing the control task when the system
is operating satisfactorily is a waste of resources [8]–[10].

The scientific interest to event-based formulation in con-
trol, communication and signal processing has gained much
attention the recent years. In the event-based systems, the
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activities are triggered by certain events instead of relying
on the progression of time. This kind of formulation may
be advantageous in resource-constrained applications with
respect to other approaches as for example the traditional
time-triggered framework [11]. An introductory paper on
event-based control is [12], while the recent developments
on event-based formulation are gathered in [13]. The general
theoretical foundations on the event-based framework are
given in [8], [14]–[16].

Motivated by the above-mentioned ideas, event-triggered
prescribed performance control has been addressed recently
in literature in [17], [18]. In particular, the aforementioned
approaches deal with a complex analysis to derive the
triggering conditions that is in some case might be not
straightforward to be implemented in real platforms. In
this work we propose an alternative and lower complexity
approach for a class of feedback control laws that benefits
from both prescribed performance ideas and the aperiodic
update innovation. In particular, the proposed control law
exhibits the following attributes:
• It is updated aperiodically only when necessary, under a

novel event-triggered condition which implies that they
require a smaller amount of actuation resources than
periodic approaches.

• It is bounded by a known upper bound which depends
on specific parameters of the dynamics of the system
and the design parameters of the control in order to
achieve the stabilization task.

• It can guarantee stabilization to a desired state within a
predefined time T > 0 by tuning the control parameters
appropriately, according to a methodology provided.

• It is robust to bounded external disturbances, uncertain-
ties and modeling inaccuracies of the dynamic model.

• It is given in closed form and have low complexity which
means that it can be directly implemented to real-time
platforms.

II. NOTATION AND PRELIMINARIES

Denote by R, Q+ and N the set of real, nonnegative
rational and natural numbers including 0, respectively. Rn

≥0
and Rn

>0 are the sets of real n-vectors with all elements
nonnegative and positive, respectively. Given a set S, we
denote by |S| its cardinality, by Sn = S × · · · × S its n-
fold Cartesian product, and by 2S the set of all its subsets.
The notations ‖x‖ :=

√
x>x and ‖x‖∞ := max

i∈N
{|xi|},

where N := {1, . . . , n}, are used for the Euclidean and the
∞−norm of a vector x ∈ Rn, respectively; We denote the
entries of a matrix A ∈ Rn×m by aij , i, j ∈ {1, . . . , n};
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Fig. 1: Graphical illustration of the prescribed performance
definition.

In ∈ Rn×n and 0m×n ∈ Rm×n are the identity matrix and
the m× n matrix with all entries zeros, respectively. A real
matrix A ∈ Rn×n is called strictly diagonally dominant if it

holds |aii| >
∑

j∈N\{i}
|aij | (see [19]).

Lemma 1: A strictly diagonally dominant matrix A ∈
Rn×n is non-singular.
Proof: By contradiction: Let A ∈ Rn×n be a strictly

diagonally dominant matrix, i.e., |aii| >
∑

j∈N\{i}
|aij |, ∀i ∈

N . Assume that A is singular, i.e., λ = 0 is one of its
eigenvalues. Then, according to Gershegorins theorem (see
[19]), we have that λ = 0 is located to one of the following
discs:

|λ− aii| ≤
∑

j∈N\{i}
|aij | ⇒ |aii| ≤

∑
j∈N\{i}

|aij |,

for i ∈ N , which is in contrast with the strictly diagonally
dominance definition. �

A. Prescribed Performance Control

Prescribed Performance control, originally proposed in [5],
[20], refers to the methodology of designing feedback laws
without any a priori knowledge of the dynamics. Moreover,
the control design guarantees that a tracking error e(t) :
R≥0 → R evolves strictly within a predefined region that is
bounded by certain functions of time, achieving prescribed
transient and steady state performance. The mathematical
formalism is given by −ρ(t) < e(t) < ρ(t), ∀t ∈ R≥0,
where ρ(t) is smooth and bounded decaying function of
time, satisfying lim

t→∞
ρ(t) > 0, called performance function

(see Fig. 1). In particular, for the exponential performance
function ρ : R≥0 → (0,∞) with ρ(t) := (ρ0−ρ∞)e−`t+ρ∞,
with ρ0, ρ∞, ` ∈ R>0, appropriately chosen constants,
ρ0 = ρ(0), is selected such that ρ0 > |e(0)| and the constants

ρ∞ = lim
t→∞

ρ(t) < ρ0, represent the maximum allowable size
of the tracking error e(t) at steady state, which may be set
to an arbitrarily small value. The latter reflects the resolution
of the measurement device, thus achieving practical conver-
gence of e(t) to zero. Moreover, the decreasing rate of ρ(t),
which is affected by the constants ` in this case, introduces
a lower bound on the required speed of convergence of
e(t). Therefore, the appropriate selection of the performance
function ρ(t) imposes performance characteristics on the
tracking error e(t).

III. SYSTEMS DYNAMICS AND ASSUMPTIONS

Consider the following continuous time and uncertain
nonlinear dynamical system:

ẋ = f(x, ω) + g(x)u, (1)

where x ∈ Rn denotes the state with initial condition x(0) ∈
Rn; u ∈ Rn is the control input; and f : Rn×Rn → Rn, g :
Rn → Rn are unknown nonlinear vector fields. The vector
ω ∈ Rn stands for the external disturbances, uncertainties
and model mismatches and it is also assumed to be unknown.
We introduce the following technical assumptions.

Assumption 1: The functions f , g are locally Lipschitz
continuous. Moreover, there exists a positive constant f such
that the following holds:

‖f(x, ω)‖∞ ≤ f, ∀x, ω ∈ Rn. (2)
Assumption 2: The matrix function g is strictly diagonally

dominant with all its diagonal entries strictly positive for all
x ∈ Rn. Thus, there exists a strictly positive constant g such
that:

gii(x)−
∑

j∈N\{i}
|gij(x)| ≥ g > 0, ∀x ∈ Rn, i ∈ N , (3)

where gij , i, j ∈ N stands for the entries of matrix g, and
N := {1, . . . , n}.

IV. MAIN RESULTS

In this section, we provide an event-triggered feedback
control law which guarantee the stabilization of the system
(1) in given desired states xi,des. Define the errors along the
components of the vectors x(t) as:

ei(t) := xi(t)− xi,des, i ∈ N . (4)

The performance functions are given by:

ρi(t) := (ρi,0 − ρi,∞)e−`it + ρi,∞, i ∈ N . (5)

The goal is to design an aperiodic feedback control law u
which guarantees that

−ρi(t) < ei(t) < ρi(t),∀t ∈ R≥0, i ∈ N . (6)

Define the normalized errors ξi : R≥0 → R, as:

ξi(t) := [ρi(t)]
−1
ei(t), i ∈ N . (7)

Let {ti,k}k∈N > 0, i ∈ N , be an aperiodic sequence of
sampling times for each of the components i ∈ N of the
vector x = [x1, . . . , xn]> ∈ Rn. Then, the following theo-
rem provides the closed form of the event-based feedback



control law that guarantees , i.e., prescribed and steady state
performance is achieved.

Theorem 1: Consider the system (1) satisfying Assump-
tion 1. Given the desire state xi,des, i ∈ N and a time T > 0.
Design the control gain such that the following holds:

κ >
max{`i(ρi,0 − ρi,∞)}µ+ f

µg
, (8)

with g as given in (3), for every i ∈ N , where µ ∈ (0, 1) is a
parameter to be appropriately chosen. Then, the event-based
feedback control law u : Rn → Rn, defined by:

u(x(t)) :=
[
u1(x1(t)), . . . , un(xn(t))

]>
, (9)

where:

ui(xi(t)) := −κξi(ti,k),∀t ∈ [ti,k, ti,k+1), i ∈ N , (10)

under the event-triggered mechanism:

ti,0 = 0, (11a)
ti,k = inf

t>ti,k
{|ξi(t)| = µ}, k ≥ 1, (11b)

for all the components i ∈ N , guarantees the following:
• the prescribed and transient steady-state performance:
−ρi(t) < ei(t) < ρi(t), ∀i ∈ N , t ∈ R≥0, with ρi
given in (5);

• Zeno behavior is excluded;
• all closed loop signals remain bounded;
• the system is driven from xi(0) to xi,des, i ∈ N at precise

time T .
Proof: By observing (7), it follows that if the normalized

errors ξi(t) remain in sets (−1, 1) for all times, the corre-
sponding errors ei(t) will satisfy (IV). Motivated by that, we
choose to update the controller under the mechanism (11),
for a desired parameter µ ∈ (0, 1). We will prove hereafter
that the mechanism (11) and the event-based control law (9)
guarantees the stability of the system with Zeno behavior
excluded.
According to (11), the first triggering time k = 0 is at t = 0,
for all the components i ∈ N . For the rest of triggering times
k ≥ 1, we investigate the following two cases. Observing
(10), (11) an upper bound of the control input, under the
proposed event-triggered mechanism (11), is given by:

‖u(·)‖∞ ≤ κµ, and |ui(·)| ≤ κµ,∀i ∈ N . (12)

• Case 1 : ξi(ti,k) = µ, i ∈ N . Recall that when ξi(t) ap-
proaches the threshold 1 the system exhibits undesired
behavior. When the trajectory of a component i ∈ N
approaches the threshold µ, it is desired not to allow to pass
this threshold, since this would lead to undesired behavior.
Thus, we need to guarantee that:

lim
t→t+i,k

ξ̇i(t) < 0 and ξ̇i(t) < 0,∀t ∈ (ti,k, ti,k+1), i ∈ N .

(13)
We shall hereafter prove the aforementioned statement. By
differentiating (7) with respect to time and substituting the

control law from (10) we get:

ρi(t)ξ̇i(t) = `i(ρi,0 − ρi,∞)e−`itξi(t)

+ fi(x(t), ω(t)) + Λi(ξ(t)). (14)

where the functions Λi : R≥0 → R are defined by:

Λi(ξ(t)) :=
∑
j∈N

gij(x(t))uj(xj(t)). (15)

By taking the limit for t→ t+i,k, i ∈ N in (14), we obtain:

ρi(ti,k)

[
lim

t→t+i,k

ξ̇(t)

]
= `i(ρi,0 − ρi,∞)e−`iti,kξi(ti,k)

+ fi(x(ti,k), ωi(ti,k)) + Λi(ξ(t
+
i,k)). (16)

By invoking (12) and employing the property: x ≤ |x|,
∀x ∈ R, we derive a negative upper bound of the function
Λi(ξ(t

+
i,k)) as follows:

Λi(ξ(t
+
i,k)) =

∑
j∈N

gij(x(t+i,k))uj(xj(t
+
i,k))

= giiui(·) +
∑

j∈N\{i}
gij(·)uj(·)

= −gii(·)κµ+
∑

j∈N\{i}
gij(·)uj(·)

≤ −gii(·)κµ+
∑

j∈N\{i}
|gij(·)||uj(·)|

≤ −gii(·)κµ+
∑

j∈N\{i}
|gij(·)|kµ

= −κ

gii(·)− ∑
j∈N\{i}

|gij(·)|

µ
≤ −κgµ, (17)

with g as given in (3). By observing (16) and (17) if we
guarantee for every i ∈ N that:

κgµ > max
{
`i(ρi,0 − ρi,∞)e−`iti,kµ+ |fi(x(ti,k), ωi(ti,k))|

}
,

or equivalently if we guarantee that: κgµ > `i(ρi,0 −
ρi,∞)µ + f,∀i ∈ N , which is equivalent to designing κ as
in (8), then, we ensure that lim

t→t+i,k

ξ̇i(t) < 0 for every i ∈ N .

Define the auxiliary functions βi : R≥0 → R, i ∈ N as:

βi(ξ(t)) := `i(ρi,0 − ρi,∞)e−`itξi(t)

+ fi(x(t), ω(t)) + Λi(ξ(t
+
i,k)). (18)

Due to the fact that it holds:

`i(ρi,0 − ρi,∞)e−`it < `i(ρi,0 − ρi,∞)e−`iti,k ,

∀t ∈ (ti,k, ti,k+1), i ∈ N ,

it is guaranteed that: βi(ξ(t)) < 0,∀t ∈ (ti,k, ti,k+1), i ∈ N .
By using the latter result in (14), we conclude that for every
i ∈ N it holds that: ξ̇i(t) < 0, ∀t ∈ (ti,k, ti,k+1). Hence we
have proved both statements of (13).
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Fig. 2: Illustration of the proposed event-triggered mechanism for a dimension n = 2. Under the proposed event-based law
(9) and the triggering mechanism (11), the signals ξ1(t) (depicted with red) and ξ2(t) (depicted with blue) evolve always
in the interval [−µ, µ] with µ ∈ (0, 1). The first triggering time is t1,0 = t2,0 = 0. The triggering times t1,1, t1,2 and
t2,1, t2,2, t2,3, t2,4 for the signals ξ1(t) and ξ2(t) are depicted with green and yellow bullets, respectively. It holds that:
lim

t→t+1,1

ξ̇1(t) < 0, lim
t→t+2,2

ξ̇2(t) < 0, lim
t→t+2,4

ξ̇2(t) < 0 and lim
t→t+2,1

ξ̇2(t) < 0, lim
t→t+2,3

ξ̇2(t) < 0, lim
t→t+1,2

ξ̇1(t) < 0. Moreover it holds

that: ξ̇1(t) < 0, ∀t ∈ (t1,1, t1,2), ξ̇2(t) < 0, ∀t ∈ (t2,2, t2,3) and ξ̇2(t) > 0, ∀t ∈ (t2,1, t2,2) ∪ (t2,3, t2,4).

• Case 2 : ξi(ti,k) = −µ, i ∈ N . Recall that when ξi(t)

approaches the threshold −1 the system exhibits undesired
behavior. When the trajectory of a component i ∈ N
approaches the threshold −µ it is desired not to allow to pass
this threshold, since this would lead to undesired behavior.
Thus, we need to guarantee that:

lim
t→t+i,k

ξ̇i(t) > 0 and ξ̇i(t) > 0,∀t ∈ (ti,k, ti,k+1), i ∈ N .

(19)
We shall hereafter prove the aforementioned statement. By
taking the limit for t→ t+i,k, i ∈ N in (14) and substituting
ξi(ti,k) = −µ, we obtain:

ρi(ti,k)

[
lim

t→t+i,k

ξ̇(t)

]
= −`i(ρi,0 − ρi,∞)e−`iti,kµ

+ fi(x(ti,k), ωi(ti,k)) + Λi(ξ(t
+
i,k)).

(20)

with Λi(·) as defined in (15). By invoking (12) and employ-
ing the property: x ≥ −|x|, ∀x ∈ R, we derive a positive
lower bound of the function Λi(ξ(t

+
i,k)) as follows:

Λi(ξ(t
+
i,k)) =

∑
j∈N

gij(x(t+i,k))uj(xj(t
+
i,k))

= giiκµ+
∑

j∈N\{i}
gij(·)uj(·)

≥ giiκµ−
∑

j∈N\{i}
|gij(·)||uj(·)|

≥ giiκµ−
∑

j∈N\{i}
|gij(·)|kµ

= κ

gii − ∑
j∈N\{i}

|gij(·)|

µ
≥ κgµ,

with g as given in (3). By observing the latter and (20), it
becomes clear that if we guarantee for every i ∈ N that:

κgµ >

max
{
− `i(ρi,0 − ρi,∞)e−`iti,kµ+ |fi(x(ti,k), ωi(ti,k))|

}
,

or equivalently if we guarantee that:

κgµ > `i(ρi,0 − ρi,∞)µ+ f,∀i ∈ N ,

which is equivalent to designing κ as in (8), then we ensure
that lim

t→t+i,k

ξ̇i(t) > 0 for every i ∈ N . Owing to the fact that:

`i(ρi,0 − ρi,∞) > −`i(ρi,0 − ρi,∞)e−`it

> −`i(ρi,0 − ρi,∞)e−`iti,k ,

∀t ∈ (ti,k, ti,k+1), i ∈ N ,

it is guaranteed that: βi(ξ(t)) > 0,∀t ∈ (ti,k, ti,k+1), i ∈ N ,
as βi defined in (18). By using the latter result in (14), we
conclude that for every i ∈ N it holds that: ξ̇i(t) > 0,
∀t ∈ (ti,k, ti,k+1). Hence we have prove both statements of
(19).

Thus, by designing κ as in (8) we have ensured that
|ξi(t)| ≤ µ < 1 for every t ∈ R≥0, i ∈ N . The latter implies
that the functions βi(t) are also bounded which, by invoking
(14), it further implies that the signals ξ̇i(t) are bounded for
every t ∈ R≥0, i ∈ N . To sum up, up until now we have
shown that:
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Fig. 3: The evolution of the error signals e1(t) and e2(t)
as defined in (4), strictly within the funnel imposed by the
performance functions ρ1(t) and ρ2(t), respectively.

• statements (13) say that if at a triggering time ti,k it
holds that ξi(ti,k) = µ, then at the next triggering time
instant ti,k+1 it will hold that ξi(ti,k+1) = −µ;

• statements (19) say that if at a triggering time ti,k it
holds that ξi(ti,k) = −µ, then at the next triggering
time instant ti,k+1 it will hold that ξi(ti,k+1) = µ;

• the signals ξ̇i(t) are bounded for all times;
• all the closed loop signals remain bounded.

By combining the aforementioned statements, we have
proven that the signals signals ξi(t) alternate between the
thresholds −µ and µ, in which the controller is updated. By
using the last result and owing to the continuity of the signals
ξi(t), and the boundedness of ξ̇i(t) for all the components
i ∈ N , there exist strictly positive constants τ i, such that
ti,k+1 − ti,k ≥ τi > 0,∀k ∈ N, i ∈ N , which implies that
Zeno behavior is excluded.

What remains to show is how we choose the convergence
rates `i, i ∈ N in order to enforce the system to be driven
from xi(0) to xi,des precise in given time T > 0. In other
words, we need to guarantee that:

|ei(t)| ≤ ρi,∞,∀t ≥ T, i ∈ N . (21)

i.e., the system will have enter and remain in the steady
state zone imposed by the constants ρi,∞ (see Section II-A
for more details) from time t = T and onwards. By invoking
(5), (7) and (11) we have that:

|ξi(t)| ≤ µ⇔ |ei(t)| ≤ µρi(t)
= µ(ρi,0 − ρi,∞)e−`it + µρi,∞, i ∈ N .

By combining the latter with (21) we have:

µ(ρi,0 − ρi,∞)e−`iT + µρi,∞ ≤ ρi,∞

⇔ e−`iT ≤ ρi,∞

ρi,0 − ρi,∞

1− µ
µ

⇔ e`iT ≥ ρi,0 − ρi,∞

ρi,∞

µ

1− µ

⇔ `i ≥
1

T
ln

(
ρi,0 − ρi,∞

ρi,∞

µ

1− µ

)
,∀i ∈ N . (22)

Thus, we have proved that by choosing `i, i ∈ N as in (22),
the system is driven from xi(0) to xi,des in precise time T .
This leads to the conclusion of the proof. �

Remark 1: By observing (4) and Fig.1, we have that when
a normalized error trajectory ξi(t), i ∈ N approach the
threshold values 1 and −1, then the error trajectory ei(t)
approach the funnel imposed by the performance function
ρi(t). Taking this into consideration, the geometrical mean-
ing of the event-triggered mechanism (11) is not to allow
the normalized error trajectories ξi(t), ∀i ∈ N to approach
the values 1, −1 for all times, but keep them bounded in the
interval [−µ, µ], µ ∈ (0, 1) instead. This also implies that the
error trajectories ei(t), ∀i ∈ N will not approach the funnel
imposed by the performance functions ρi(t) for all times. In
order to intuitively understand the proposed event-triggered
mechanism (11), we provide an example in R2 which can
be depicted in Fig. 2.

V. SIMULATION RESULTS

For a simulation scenario, consider an agent with dynamics:

ẋ1(t) = 2 cos(x1(t) + x2(t)) + 0.1 sin(2t) + 2u1(t) + u2(t),

ẋ2(t) = sin(x1(t) + x2(t)) + 0.1 cos(t) + u2(t) + 2u1(t),

from which it yields that: f = 2.1 and g = 1. We set
the initial and desired states x(0) = [0, 0]>, xdes = [4, 0]>,
respectively. The desired time for the system to be driven
from x(0) to xdes is set to T = 3.5 sec. By following the
procedure presented in Section IV, the proposed feedback
control laws generate a unique trajectory x(t), which guar-
antees the desired task.

In Fig. 3, Fig. 4 and Fig. 5 we depict the error states,
the triggering mechanism and the control input signals, re-
spectively, that arise for the transition of the system between
x(0) to xdes. The performance functions parameters for this
transitions are chosen as: ρ1,0 = 5.5, ρ0,2 = 1.2, ρ1,∞ =
ρ2,∞ = 0.1 and `1 = `2 = 0.7. Note that for this transition,
the feedback controllers u1 and u2 are updated 5 and 11
times, respectively, in a simulation time of 4 seconds. A
periodically sampled controller with sampling time of 0.1 sec
would have been updated 40 times.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this work, we have proposed a novel event-triggered
mechanism for model free prescribed performance con-
trollers for unknown and uncertain nonlinear systems. The
controller has low complexity, is updated aperiodically, can
guarantee stabilization in predifined time and is promising
for robotic applications where time constraints are imposed
to the tasks of the robot (see for example the works [21]–
[23]). Future research directions include extension of this
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Fig. 4: The evolution of the transformed error signals ξ1(t), ξ2(t) for the under consideration simulation task.
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Fig. 5: The feedback control laws that guarantee the navigation of the agent between x(0) and xdes.

framework towards a self-triggered mechanism and multi-
agent setups in scenarios where the triggering mechanism
also takes into account the intermittent communication be-
tween the agents.
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