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Abstract— This paper presents the design of a vision–based
object grasping and motion control architecture for a mobile
manipulator system. The optimal grasping areas of the object
are estimated using the partial point cloud acquired from an on–
board RGB-D sensor system. The reach-to-grasp motion of the
mobile manipulator is handled via a Nonlinear Model Predictive
Control scheme. The controller is formulated accordingly in
order to allow the system to operate in a constrained workspace
with static obstacles. The goal of the proposed scheme is to guide
the robot’s end-effector towards the optimal grasping regions
with guaranteed input and state constraints such as occlusion
and obstacle avoidance, workspace boundaries and field of
view constraints. The performance of the proposed strategy is
experimentally verified using an 8 Degrees of Freedom KUKA
Youbot in different reach-to-grasp scenarios.

I. INTRODUCTION

During the last decades, the employment of robotic sys-
tems in various fields of industry, society, medicine, agri-
culture and security [1] has been significantly increased. In
many of these tasks, the robots interact with the environment
as well as with humans, in order to facilitate, improve and
expedite specific operations that were usually carried out
by humans exclusively. In this context, object manipulation
is a fundamental robotic operation which typically involves
detection/recognition and grasping control algorithms. For
example, an interaction robot should be able to pick up an
object from a human, transport it through a non obstacle–
free environment and deliver it in a specific location. Hence,
the investigation and development of robust reach-to-grasp
algorithms for robotic systems operating in partially known
environments (e.g., warehouses) is of utmost importance.

Numerous studies have been reported regarding the design
of control algorithms for feasible and stable robotic grasp.
Issues such as force-closure, task compatibility and other
desired properties have been investigated [2], [3], [4], [5],
along with the problem of grasp selection and planning [6],
[7].

However, robust grasping also requires precise detection
of the object in 3D space. This challenging issue can
be encountered by employing vision based methods which
either relay on the full 3D model of the object in order to
calculate the optimal grasping areas by using multiple images
and/or point clouds [8], [9], [10], [11] or other methods that
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Fig. 1: Youbot Mobile Manipulator and Reference Frames

evaluate only the partial information of the object [12], [13],
[14], [15].

When the desired location of the grasp has been identified,
the fingers or the gripper of the robot should be guided to the
computed grasping pose through a collision-free and feasible
trajectory. Different techniques, such as visual servoing, path
planning and haptic feedback on the fingertips can be used
to pick up the object.

In [16] a combined vision–force approach was employed
in order to guide a robotic hand during a grasping and manip-
ulation task. Moreover, the authors in [17] presented a hybrid
visual servoing approach for grasping and manipulation
using a humanoid where force feedback was incorporated in
order to deal with possible contact events. However, neither
occlusion avoidance nor Field of View (FoV) constraints
were taken into account in both studies. In [18], the authors
proposed a vision-based Q-learning control scheme for a
mobile manipulator system where FoV constraints where
included. Nevertheless, possible restrictions such as joint
limits, obstacle or occlusion avoidance were not addressed.

Also, probabilistic approaches are widely used for
collision-free motion planning of redundant robotic systems
such as mobile manipulators, due to high-dimensionality of
the configuration space. In [19], [20], an integrated approach
using Rapidly-Exploring Random Trees (RRTs) for effec-
tively grasping or re-grasping of objects was proposed. In a
similar vein, authors in [21] proposed a method for solving
both grasp and motion planning simultaneously. However,
the aforementioned studies do not deal with dynamically
changing environments (possible motion of the object, noisy
RGB-D measurements etc.) while the object was assumed a



priori known.
The motion control of mobile manipulators in constrained

environments is a challenging problem, where multiple input
and state constraints are imposed to the system. Non-linear
Model Predictive Control (NMPC) [22], is an ideal approach
for complex robot missions, as it is able to combine motion
planning, obstacle avoidance and workspace restrictions,
while handling efficiently input and state constraints.

Recent studies investigate the use of MPC in mobile
robots. In [23], the authors used a dipolar vector field and
NMPC with FoV constraints in order to navigate a non-
holonomic vehicle in an obstacle–free environment. In [24],
[25] NMPC was employed in multiple omni–directional
mobile robots for target tracking and formation control tasks.
Moreover, in [26] a similar to RRTs approach was combined
with MPC for the navigation of mobile robots.

On the other hand, more limited is the span of literature
in MPC for mobile manipulator systems. In [27], an MPC
approach for a mobile manipulator without obstacles was
presented. A self-triggered MPC framework for image based
visual servoing of a mobile manipulator was described in
[28]. Nevertheless, neither obstacle nor occlusion avoidance
were considered. In [29], the authors introduce a constrained
predictive control algorithm for a holonomic mobile ma-
nipulator. Restrictions in the form of acceleration, velocity,
position, and obstacle avoidance were taken into account. An
extended version is presented in [30], where time varying
desired configurations have been taken under consideration
for a linearized system of a mobile manipulator. Nonetheless,
no grasping was considered in both studies.

In this work, we present a complete strategy for vision-
based object grasping via a Mobile Manipulator System
(MMS). An algorithm based on [15] is implemented in
order to calculate on–line the optimal grasping areas of an
unknown object handled by a human. The object is detected
and tracked via an RGB-D sensor which is rigidly mounted
on the system platform (Fig. 2). An NMPC motion scheme is
designed to guide the mobile manipulator through a feasible
and collision-free path in order to pick up the object from
a human. A complex set of constraints such as obstacle and
occlusion avoidance, field of view and workspace constraints,
are satisfied during the reach-to-grasp operation. The perfor-
mance of the proposed strategy is experimentally verified
using an 8 DoF KUKA Youbot [31] in reach and grasp
scenarios involving unknown objects of different geometry.
The overall system architecture is depicted in Fig. 2.

The rest of the paper is organized as follows: Section II
presents an analytical description of the proposed method-
ology which consists of: i) the MMS model ii) the object
detection algorithm iii) the optimal grasping area compu-
tation method and iv) the NMPC formulation. Section III
demonstrates the applicability and performance of the pro-
posed control scheme via different experimental scenarios.
Finally, Section IV concludes the paper.

II. METHODOLOGY

A. Mobile Manipulator System Model

In this work we consider a KUKA Youbot MMS which
consists of a 5 DoF arm mounted on an omni-directional
platform with 4 swedish mecanum wheels. The overall setup
results in a redundant 8 DoF MMS (Fig. 1). The kinematic
equation of the complete system is given in discrete form
by:

qk+1= qk+A (qk,uk)∆T (II.1)

where qk=
[
qarmk

, qbasek
]T

is the state
vector consisting of the arm joint states qarmk

=[
q0k , q1k , q2k , q3k , q4k

]T
and the base

pose states qbasek =
[

IxBk
, IyBk

, IψBk

]T
,

respectively. The latter are defined with respect to
the Inertial Frame I as shown in Fig. 1. In Eq. II.1
uk=

[
uarmk

, ubasek
]T

is the complete system input
vector which consists of the joint velocities of the arm
uarmk

=
[
ωq0k , ωq1k , ωq2k , ωq3k , ωq4k

]T
and the

wheel velocities (front left and right, back left and right re-
spectively) ubasek =

[
ωFLk

, ωFRk
, ωBLk

, ωBRk

]T
of the omni-directional base. A more detailed view of Eq.
II.1 reveals a linear kinematic model for the arm:

qarmk+1
= qarmk

+ uarmk
∆T (II.2)

while the base kinematics is obviously non-linear due to
transformation of the velocities from the Body frame B to
the Inertial frame I:

qbasek+1
= qbasek +

Rw
4

IRBTCAubasek∆T (II.3)

where IRB =

 cosψk − sinψk 0
sinψk cosψk 0

0 0 1

 denotes the trans-

formation from B to I and

TCA =

 1 −1 1 −1
−1 −1 1 1
− 1
L+` − 1

L+` − 1
L+` − 1

L+`

 (II.4)

is the control allocation matrix which transforms body
velocities to wheel velocity commands. Rw, L, l are the
geometrical properties of the base (wheel radius, vertical and
horizontal lengths). The position and orientation of the MMS
end-effector (ee) with respect to I , is given by the forward
kinematics of the complete system (arm and mobile base) as
follows:

Ipee = Fee(q) (II.5)

B. Object Detection

The object detection and tracking algorithm is based on
the Point Cloud Library (PCL) [32] for 3D object tracking.
The purpose of the library is to provide a comprehensive
algorithmic base for the estimation of 3D object poses using
Monte Carlo sampling techniques. The library is optimized to
perform computations in real-time, by employing multi CPU



Fig. 2: Overall System Architecture

cores optimization, adaptive particle filtering (KLD sam-
pling) and other modern techniques. The employed algorithm
is based on standard 3D object tracking implementations,
thus only the basic steps are briefly presented below:

1) The tracker is initialized by specifying the target
object’s point cloud. This procedure is performed by
creating the segment model of the object when the
tracking algorithm begins.

2) Using previous particles information about position
and orientation, the pose of the next frame is predicted.

3) A likelihood formula is employed in order to calculate
the weights of the particles.

4) An evaluation function compares the real point cloud
data acquired from the RGB-D sensor with the pre-
dicted particles and performs re-sampling.

Fig. 3: Target Object Segmentation

In Fig. 3 the reference model segmentation’s cloud is pre-
sented in blue, while in red the particles’ cloud is depicted.
Moreover, the visible point clouds of the target object (Fig.
4b) are computed by applying the reference model segmen-
tation’s cloud as a 3D mask to the input cloud acquired by
the RGB-D sensor.

C. Grasping Algorithm

An algorithm, inspired by [15], that computes on–line the
optimal grasping area is integrated in the proposed reach-
to-grasp architecture. The aforementioned grasping method
has been selected due to its fast and robust performance.
Moreover, it does not depends on off–line training data or
3D model of the object. The grasp planner relays only on
the visible point cloud of the object and the characteristics of

(a) RGB-D Sensor Point Cloud

(b) Target Object Visible Points (c) Object Contour & Grasping
Area

Fig. 4: Grasping Algorithm

the robotic gripper such as max opening, length and height
(Fig. 5). The steps of the algorithm are presented in detail
below:

Fig. 5: Dimensions of Youbot Gripper

1) Acquire the point cloud and the pose of the target
object: The visible points of the object and its pose
are calculated from the object detection procedure



described in the Subsection II-B and therefore they are
expressed in object local reference frame in order to
process the point cloud and find the optimal grasping
area.

2) Transform the point cloud to its local frame: The
visible points are expressed in RGB-D sensor frame
and they are transformed to its local frame in order to
compute the optimal grasping area. The object frame
and the transformed visible points (white colored) are
depicted in Fig. 4c.

3) Calculate the contour of the point cloud: The Concave
hull contour approach is used to extract the contour of
the target object.

4) Calculate the graspable zone: After computing the
contour of the target object the maximum gripper
opening is taken into consideration in order to extract
the graspable zone. The width of the contour is checked
and if the points are out of the grasping range they are
removed from the points of the contour. The graspable
zone is defined by the red colored points in Fig. 4c.

5) Compute the optimal grasping area: Having the gras-
pable zone that has been calculated above, the optimal
pose of the gripper with respect to object is now
computed using the gripper height (Fig. 5). The robotic
gripper can be considered as a rectangle (depicted
with green color in Fig. 4c) with height and width
equal to height and max opening of the gripper, re-
spectively. Moving this rectangle along Z − axis of
the object frame (the blue axis in Fig. 4c) from the
zmin, which is the minimum z value of the all points
on the graspable object zone (red points), till zmax −
gripper height value ( zmax is the maximum value of
Z − axis of all the points on the graspable zone) the
optimal area is computed. A force balance optimization
method is used to evaluate every grasping area. More
specifically, a straight line is fitted for the points on
the two grasped sides (Fig. 4c) and the angle between
the two resulting lines is computed. The bigger the
angle is, the grasp quality is reduced for a parallel
gripper. Consequently, the best grasp should be on two
parallel straight lines. The smallest angle means the
best and more reliable grasp. When the angle between
the lines of two or more rectangles has the same value
equal to the minimum one, the pose of the rectangle
that is closer to the centroid of the target object’s
points is selected as the optimal one. The position
of the rectangle w.r.t the target object frame Opg is
calculated. The rotation of the optimal grasping pose
is computed using the Rodrigues’ rotation formula:
ORg = I3×3 + [v ]× + [v ]2×

1−c
s2 , where v = v̂l × ẑ,

s = ||v || and c = v̂l · ẑ. The ẑ is the unit vector along
Z − axis and v̂l is the unit vector along the one line
of the optimal gripper rectangular. Finally, the position
and orientation of the grasping area are expressed in

RGB-D sensor frame: Cpg =

[
CRO

CpO
O1×3 1

] [
Opg
1

]
and CRg = CRO

ORg .

The grasping steps are given in Algorithm 1.

Algorithm 1 Grasping Algorithm

1: procedure FASTGRASP(maxOpening, height)
2: top:
3: ObjectPoints←GetObjectVisiblePoints()
4: ObjectPose←GetObjectPose()
5: if ObjectPoints.Size() > 0 then
6: ObjectPoints←TransformPoints(ObjectPoints,ObjectPose)
7: contour←ConcaveHullContour(ObjectPoints)
8: graspContour←GraspableZone(contour,maxOpening)
9:

ORg,
Opg ←OptimalGrasp(graspContour, height)

10:
CRg,

Cpg ←TransformPoint(gpO,ObjectPose)
11: return CRg,

Cpg

12: goto top

D. Model Predictive Control Scheme

As discussed previously, the proposed motion control
scheme for the reaching and grasping task is based on the
predictive control notion. More specific, at a given time
instant k, the NMPC utilizes the current state measurement
of the MMS qk in order to solve an Optimal Control
Problem (OCP) with respect to a control sequence Uk =[
uTk|k,u

T
k+1|k, . . . ,u

T
k+N−1|k

]T
, for a prediction horizon N ,

with u = [uarm,ubase]
T .

1) Optimization Problem: First, for the sake of simplicity,
we denote xk = Fee(qk), that is the non-linear mapping of
q at time step k to the end–effector pose Ipee with respect
to frame I by employing Eq. II.5. Now, using the above
declarations, the OCP of the NMPC is given as:

min
Uk

J(xk,Uk) =

min
U(·)

N−1∑
i=0

F (x̂k+i|k,uk+i|k) + V (x̂k+N |k), (II.6a)

subject to:
x̂k+i|k = Fee(q̂k+i|k), i = 0, 1, . . . , N (II.6b)
q̂k+i|k = q̂k+i−1|k + A(q̂k+i−1|k,uk+i−1|k)∆T,

i = 1, . . . , N (II.6c)

gq
(
q̂k+i|k

)
< 0, i = 1, 2, . . . , N (II.6d)

gu
(
uk+i|k

)
< 0, i = 0, 1, . . . , N − 1 (II.6e)

where J(·) is the optimal cost consisting of the running
F and terminal V costs. At time instant k, the solution
of the OCP ((II.6a)-(II.6e)) is providing an optimal control
sequence, denoted as:

Uk,opt =
[
uTk|k,u

T
k+1|k, . . . ,u

T
k+N−1|k

]
(II.7)

where the first control vector (i.e.,uTk|k) is applied to the
system. Notice we use the double subscript notation for the
predicted state of system (II.1) inside the OCP of the NMPC:

q̂k+i|k = q̂k+i−1|k + A(q̂k+i−1|k,uk+i−1|k)∆T

where the vector q̂k+i|k denotes the predicted state of the
system (II.1) at sampling time k + i with i ∈ Z≥0. The
predicted state is based on the measurement of the system
at sampling time k (i.e., provided by the on-board encoders



and odometry), while applying a sequence of control inputs[
uTk|k,u

T
k+1|k, . . . ,u

T
k+i−1|k

]
. It holds that q̂k|k = qk. The

running cost function F (·), as well as the terminal cost
V (·), are both of quadratic form, i.e., F (x̂,u) = x̂TQF x̂+
uTRFu and V (x̂) = x̂TPV x̂, respectively, with QF , RF

and PV being positive definite matrices. Particularly, we
select QF as a positive definite matrix that penalizes the
state error and RF as a positive semi-definite matrix that
penalizes the control effort. In similar way, we select PV
to be a positive definite matrix that penalizes the state error
at the final prediction step. Moreover gq and gu are contin-
uously differentiable functions denoting the state and input
inequality constraints, respectively, and will be analyzed in
detail in the following subsections.

Remark 1: The optimization problem is solved using
gradient-based methods (i.e., Augmented Lagrange Multipli-
ers, LBFGS and Quadratic Interpolation algorithms). Thus,
the cost and the inequality constraint functions must be
continuously differentiable functions of the state and input
trajectories.

2) Obstacle Avoidance & Workspace Constraints: Con-
sider a robot which operates inside the workspace W ⊂
R3 with boundaries ∂W and scattered obstacles located
within. We may consider without loss of generality, that
the robot and the obstacles can be modeled as spheres.
Hence, let B(IpMMS , r) be a sphere with center IpMMS =
[IxBk

,IyBk
] and radius r that surrounds the mobile platform

and arm. The radius r depends directly on the configuration
of the manipulator and it is the position of the end-effector
w.r.t base frame B which can be calculated using the
arm forward kinematics. Moreover, the M static obstacles
within the workspace are also defined as spheres πm =
B(Ipπm , rπm), m ∈ {1, . . . ,M}, where Ipπm ∈ R3 is
the center and the rπm > 0 the radius of the obstacle
πm. According to the property of spherical world [33], for
each pair of obstacles m,m′ ∈ {1, . . . ,M} the following
inequality holds:

||πm − πm′ || > 2r + rπm
+ rπ′

m
(II.8)

which intuitively means that the obstacles m and m′ are
disjoint in such a way that the entire volume of the MMS
can pass through the free space between them. Therefore,
there exists a feasible trajectory IpMMS(t) for the MMS
that connects the initial configuration IpMMS(t0) with the
desired one IpMMSd such as:

B(IpMMS(t), r)∩{B(pπm
, rπm

)∪∂W} = ∅, m∈{1, . . . ,M}

A graphical representation of the feasible trajectory is de-
picted in Fig. 6.

3) Occlusion Avoidance: Let qarm ∈ Rm be the vector
of manipulator joint displacements where m is the number
of manipulator joints and Bpi ∈ R3 be the position of joint
i, i = 0 . . .m with respect to the mobile platform base frame
B as Fig. 7 depicts. The Cartesian coordinates of each i joint
can be calculated using the arm forward kinematics:

Bpi = Fi(qarm) (II.9)

r•
IpMMS(t0)

r•
IpMMSd

• rπ1

pπ1

rπ2

pπ2

•

Fig. 6: Graphical representation of a feasible robot trajectory from
an initial position IpMMS(t0) to a desired one IpMMSd.

Fig. 7: Geometry of Occlusion Avoidance

where Fi(.) is the forward kinematics from base frame B to
i-th joint. If link i is modeled by a line segment from joint i
with Cartesian coordinates Bpi to joint i+ 1 with Cartesian
coordinates Bpi+1, the unit vector of the link with length li
is computed by:

êi(qarm) =
Bpi+1 −

Bpi
li

(II.10)

The line segment equation S̄i of the i-th manipulator link is
defined by

S̄i : Si(µi, qarm) = Bpi + µi· êi
µi ∈ R ∧ µi ∈ [0, li]

(II.11)

Considering a line segment S̄o from robot camera Cartesian
coordinates Bpc to target object position Bpo, the correspond-
ing equations are:

S̄o : So(λ) = Bpc + λ· êo
λ ∈ R ∧ λ ∈ [0, lo]

(II.12)

where êo =
B
po−

B
pc

lo
is the unit vector and lo = ||Bpo −

Bpc|| the length of the line segment S̄o. Then, the Minimum
Distance Dmin

i between each link of the robot and the
occlusion line can be calculated. The vector between any
two points on the two lines (occlusion and robot link) is:

Di(µi, qarm, λ)=Si(µi)−So(λ)=(Bpi−
Bpc)+µi· êi−λ· êo

(II.13)



The shortest among these vectors is perpendicular to both
lines and thus:

(Bpi −
Bpc)· êi + µmini − λmin(êi· êo) = 0

(Bpi −
Bpc)· êo + µmini (êi· êo)− λmin = 0

(II.14)

Solving for the line parameters and considering that the
line segments are not parallel (êi· êo 6= 1), we obtain

µmini =
(
B
pi−

B
pc)·êo−[(

B
pi−

B
pc)·êi](êi·êo)

1−(êi·êo)2

λmin =
(
B
pi−

B
pc)·êi−[(

B
pi−

B
pc)·êo](êi·êo)

1−(êi·êo)2

(II.15)

However, we suppose the minimum distance between two
finite line segments S̄i and S̄o which means that 0 < µmini <
li and 0 < λmin < lo. Therefore, if the value of µmini

computed by eq. II.15 is greater than li, then µmini = li
and if µmini < 0, then µmini = 0. Similarly for λmin. In the
situation that two line segments are parallel (êi· êo = 1), the
distance between them is constant. The parallel distance can
be computed by setting one parameter to zero, e.g. λmin = 0,
and solving for the other (µmini ) using the equations in II.14.

Having computed the parameters of the line segments as
described above, it is trivial to calculate the vector between
the proximate points by substituting them in eq. II.13:

Di(µ
min
i , qarm, λ

min) = (Bpi−
Bpc)+µmini · êi−λmin· êo

(II.16)
and consequently, the minimum interline distance is

Dmin
i = ||Di(µ

min
i , qarm, λ

min)|| (II.17)

Hence, in order to avoid a possible occlusion between the
camera (RGB-D sensor) and the target object, the above
inequalities must be satisfied:

Dmin
i − ε > 0,∀i ∈ [1,m] ∧ i ∈ N (II.18)

where ε ∈ R is the radius of the augmented cylinder in which
the 4-sided pyramid calculated by the object dimensions is
inscribed as shown in Fig. 7.

4) Field of View Constraints: Let us define vector opc =
[oxc,

oyc,
ozc,

oψc] describing the pose of the camera (RGB-
D sensor) with respect to the object frame and a, b the field of
view angles in horizontal and vertical axes. If yT , zT are the
dimensions of the object bounding box along the horizontal
and vertical axes, the following inequalities must hold in
order to always maintain the object inside the camera field
of view:

− oyc + oxc tan
(
oψc −

a

2

)
− yT

2
≥ 0 (II.19a)

oyc − oxc tan
(
oψc +

a

2

)
− yT

2
≥ 0 (II.19b)

− ozc − oxc tan

(
b

2

)
− zT

2
≥ 0 (II.19c)

ozc − oxc tan

(
b

2

)
− zT

2
≥ 0 (II.19d)

The above inequalities are actually a 3D extension of the
2D visibility constraints appear in [23], thus the analytical
derivation is omitted due to space limitations.

5) State Constraints by Design: The arm joints have
hardware limits which reflect to the feasible positions of the
joints. These limits are captured by the following inequali-
ties:

qarmi
≤ |q̄armi

|, i = 0 . . . 4 (II.20)

where by (̄·) we denote the upper bound of the corresponding
variable. The omni-directional wheels of the mobile platform
can rotate freely, hence no position constraint is imposed.

6) Input Constraints by Design: As it is shown in Eq. II.1,
the inputs of the system are the joint and wheel velocities
at time step k as described in vector uk. As it is expected,
the inputs have upper and lower bounds by design, and if
these bounds are exceeded the inputs are saturated. Thus,
we define the input constraint set Um as follows:

uk = [uarmk
,ubasek ]T ∈ Um ⊆ R9 (II.21)

These constraints are of the form |ωqim | ≤ ω̄qim , i =
0 . . . 4 for the arm and |ωFLm

| ≤ ω̄FLm
, |ωFRm

| ≤ ω̄FRm
,

|ωBLm
| ≤ ω̄BLm

, |ωBRm
| ≤ ω̄BRm

for the mobile platform
wheels.

III. EXPERIMENTAL RESULTS

In order to demonstrate the efficacy of the proposed
strategy, two experimental reaching and grasping procedures
with different objects were carried out using a KUKA Youbot
MMS, equipped with a Kinect RGB-D sensor as shown in
Fig.1. Both experiments can be seen in the accompanying
video, while, due to space limitations, the experimental
results only for the first case study are discussed in this
section. In the experimental scenarios, a human located
inside the workspace, is holding an object. The Youbot starts
from an initial pose and it is guided by the proposed scheme
in order to reach the object and pick it up from the human.

In the experiments, the radius of the obstacles was rπm =
0.15m, while the dimension of the workspace was Length×
Width = 4m × 2.8m. The input bounds for the arm joint
velocity commands are |ω̄qim | = 0.4rad/s, while for the
wheel velocity commands of the omni-directional platform
are |ω̄FLm

| = |ω̄FRm
| = |ω̄BLm

| = |ω̄BRm
| = 1.57rad/s.

The position and orientation errors of the MMS end–
effector are depicted in Fig. 8. As it shown by the system
responses, the end-effector successfully reaches the pose of
the target object. Moreover, Fig. 9 shows the control inputs
calculated by the NMPC scheme, which remain within the
specified bounds (depicted by red dashed lines) at all times.
The responses of the arm joint states are omitted since it can
be observed from the accompanying video that the system
never reached its joint limits. The trajectory executed by the
robot can be seen in Fig. 10. As it can be observed, the
bounding circle (green disc) of the robot intersects neither
the two static obstacles (red discs) nor the workspace’s
boundaries (black bold lines). The radius of the green circle
changes according to the configuration of the arm which
is depicted in 5 sample trajectory poses. In Fig. 11 the
occlusion constraints Dmin

i − ε are depicted, as Distances
1, 2, 3, where it is shown that the NMPC scheme successfully



(a) End Effector Position Error

(b) End Effector Orientation Error

Fig. 8: End Effector Position and Orientation Errors during Reach-
ing and Grasping

manages to keep them within the specified limits (always
positive). Finally, the Field of View constraints are shown in
Fig. 12 where each line represents the inequalities presented
in Eq. II.19. As it can be observed, the NMPC successfully
respected the specified FoV restrictions.

IV. CONCLUSION

In this paper we presented a vision–based object grasping
and motion control architecture for a mobile manipulator sys-
tem. The optimal grasping areas of the object were estimated
via an appropriate algorithm and the on–line measurements
of an on–board RGB-D system. The overall (reaching and
grasping) motion of the MMS was handled via a Nonlinear
Model Predictive Control scheme, capable to handle complex
and multiple input and state constraints, such as occlusion
and obstacle avoidance, workspace boundaries and field of
view restrictions. The performance of the proposed strategy
was experimentally verified using a KUKA Youbot, operat-
ing inside a constrained workspace with obstacles, in order
to acquire an object from the hands of a human.
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