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Abstract— It is well known that a real-time visual servoing
task which employs a Visual Tracking Algorithm (VTA) imposes
high computational cost to robotic system, which consequently
results in higher energy consumption and lower autonomy.
Motivated by this fact, this paper presents a novel Image Based
Visual Servoing-Model Predictive Control (IBVS-MPC) scheme
which is combined with a mechanism that decides when the
VTA needs to be triggered and new control inputs must be
calculated. Between two consecutive triggering instants, the
control input trajectory is applied to the robot in an open-
loop fashion, i.e, no visual measurements and calculation of the
control inputs are required during that period. This results in
the reduction of the computational effort, energy consumption
and increases the autonomy of the system. These factors are
of utmost importance in the case of small autonomous robotic
systems which perform vision based tasks, such as surveillance
and inspection of indoors and outdoors environments. The
visibility and inputs constraints, optimality rate of the MPC, as
well as the external disturbances, are being considered during
the control design. The efficiency of the proposed scheme is
demonstrated through a set of real-time experiments using an
eye-in-hand mobile robotic system.

I. INTRODUCTION

Visual Servoing consists in using the camera as a sensor
for the communication of the robot with the environment, and
using the visual feedback for the determination of the control
input. Structurally, it can be classified as: (i) Position-Based
Visual Servoing (PBVS), (ii) Image-Based Visual Servoing
(IBVS) and (iii) 2-1/2 Visual Servoing where the 3D PBVS
is combined with 2D IBVS [1], [2].

In this work, the IBVS scheme is considered, as it is more
efficient than the other two, owing to its inherent robustness
against camera calibration imperfections. A significant issue
in visual servoing is handling the visibility constraints,
imposed by the fact that the image features are required
not to leave the Field Of View (FOV) of the camera during
its motion [3]. In order to handle the visibility constraints
various methods have been developed. More specifically, in
[4] and [5] path planning of the image features based on the
motion of the camera in 3D space are presented. Moreover
in [6] a novel strategy based on the prescribed transient and
steady state response on the image feature error is presented.

Nonlinear Model Predictive Control (NMPC) [7], due to
its strong and efficient ability to handle input and state
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Fig. 1: The classic IBVS-MPC and ST-IBVS-MPC are depicted in
the top and bottom diagrams respectively.

constraints is an ideal approach to be used in IBVS. The
IBVS-NMPC framework has been studied in [8], [9], [10]
and [11]. In our previous work [8] a robustness analysis
of the IBVS-MPC with respect to (w.r.t) the disturbances
and noises on the image features has been proposed. The
Visual Predictive Control (VPC) scheme has been proposed
in [9] where the visibility constraints are formulated as state
constraints. Some applications of IBVS-MPC for navigation
of an Unmanned Aerial Vehicles (UAV), as well as some
medical applications have been presented in [10] and in [11],
respectively.

A standard visual servoing scheme consists the periodic
use of the vision feedback which is extracted from the image
to generate a task error and using a control algorithm to
minimize this error. The process of image feature extraction,
matching with a desired image and using them to generate
the task error, is usually referred in the literature as the
Visual Tracking [12]. It is well known that, a real-time
robotic application in a complex environment, the accurate
and robust Visual Tracking Algorithm (VTA) is very heavy
process and has high computational cost which usually
results in large energy usage and delays on the closed loop
system.

This problem becomes more apparent when small autono-
mous robotic systems are considered such as Autonomous
Underwater Vehicles (AUVs) and UAVs that suffer from
limited energy resources (batteries) and usually are equip-
ped with small and not so powerful embedded computing
unit. Long lasting inspection tasks in complex environments
require accurate VTA and concurrently high autonomy rate
of the system. The problem then, becomes more evident,
because the continuous recharging procedure is undesirable,
difficult and time consuming. In addition, the continuous



visual tracking at every sampling time owing to the existence
of a weak computing unit in these systems, leads to bigger
sampling periods on the closed loop system, that consequent-
ly reduce the accuracy of the system.

Now, is it possible to design a visual servoing scheme that
decides when the robot needs to track the visual information
and when not, while the whole system does not lose the
required performance? This question, motivates the self-
triggered design framework for Visual Servoing in order
to track the vision information and compute the control
law only when it is needed. Generally, in Self Triggered
control the key attribute is that the decision for sampling the
state measurement as well as the execution of the control
task is not made ad-hoc as in the sampled-data case, but it
takes into account state or output feedback, see Fig1. Some
introductory papers on self-triggered control can be found
in [13] and [14]. In our previous work [15] a Self Triggered
Position Based Visual Servoing scheme for an under-actuated
underwater robotic vehicle was given. In this work we extend
our previous work into a general image based version by
presenting the Robust Self Triggered-Image Based Visual
Servoing-Model Predictive Control (ST-IBVS-MPC) scheme.
The mechanism of the proposed framework, decides when
the next VTA should occur. This results to the reduction of
the computational effort, processing of vision data, energy
consumption and therefore it increases the autonomy rate of
the system. The visibility and inputs constraints, optimality
rate, as well as the external disturbances, are also being
considered during the control design.

The paper is organized as follows: Modeling of the IBVS
is given in Section II. Section III includes the problem
statement and the control design. Section IV accommodates
the stability analysis of the proposed self-triggered IBVS-
MPC scheme. In Section V a comparative experimental study
is given and finally, Section VI concludes the paper.

II. MATHEMATICAL MODELLING

Let [Xc, Yc, Zc]
> be the axes of the camera frame C

attached at the center of the camera Oc. The coordinates
of the image frame I are given by [u, v]> with OI denoting
the center of the image, as depicted in Fig. 2. Given a set of

Fig. 2: The coordinate frame of the camera system.

n fixed 3D points P i = [xi, yi, zi]>, i = 1, . . . , n expressed
in the camera frame, the corresponding 2D image feature
si = [ui, vi]>, i = 1, . . . , n are given as follows [12]:

si =

[
ui

vi

]
=

λ

zi

[
xi

yi

]
(1)

where λ is the focal length of the camera (see Fig.2). The
time derivative of (1) is given by:

ṡi = Li(zi, si)V , i = 1, . . . , n (2)

where: Li
(
zi, si

)
=

=

[
− λ
zi

0 ui

zi
uivi

λ
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λ
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zi
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−u
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]

is the interaction matrix [12], and V = [T,Ω]> =
[Tx, Ty, Tz, ωx, ωy, ωz]>, denotes the translational and angu-
lar velocities of the camera which represents the control input
of the system. Let us also define the overall image feature

vector s =
[
si
>
, · · · , si>

]>
∈ R2n, the time derivative of

which is given by:
ṡ = L(z, s)V (3)

where L (z, s) =
[
Li> (zi, si) , · · · , Ln> (zn, sn)

]>
is the

overall interaction matrix and z =
[
zi, . . . , zn

]>
. Using the

Newton-Euler method for approximating (3), the model of
the system in the discrete-time frame becomes:

sk+1 = sk + dt(L̂k · Vk) (4)

where dt and k are the sampling period and time-step
respectively. It is obvious that the L̂k depends on depth
parameter, thus two cases one with unknown and one with
known depth parameter can be considered. In the first one, the
depth parameter is unknown and it is replaced by its desired
value in the desired position of the camera zi = zi

∗
, i =

1 . . . n. Although, in the known case, the depth parameter is
available in each sampling time. For the rest of paper we
denote sk = [s1k

>
, · · · , snk

>]> to be the vector of the state
at a time-step k. The vector of the velocity of the came-
ra Vk = [T(x,k) T(y,k) T(z,k) ω(x,k) ω(y,k) ω(z,k)]

>

will denote the input of the system at a time-step k. The
aforementioned discrete-time system (4) is the nominal sys-
tem and can be written in stack vector form as:

sk+1 = f(sk, Vk) (5)

The control constraint set Vset is compact and is given by:

Vk ∈ Vset ⊆ R6 (6)

The constraints of the input are of the form |Tx| ≤ T̄x,
|Ty| ≤ T̄y , |Tz| ≤ T̄z , |ωx| ≤ ω̄x, |ωy| ≤ ω̄y and |ωz| ≤ ω̄z .
where ( ·̄ ) denotes the upper bound for each of the variables.
We set ‖Vk‖ ≤ V̄ , with V̄ to be the upper bound for the
control input of the system. Finally, owing to the limited field
of view of the camera, the image coordinates are subject to
the following visibility constraints:

umin ≤ ui ≤ umax, i = 1, . . . , n (7a)

vmin ≤ vi ≤ vmax, i = 1, . . . , n (7b)

where umin, vmin and umax, vmax are the lower and upper
bounds (in pixels) of the image plane coordinates u, v respec-
tively. These visibility constraints form the state constraint
set Sset ⊆ R2n i.e., sk ∈ Sset. Assume that the system (5)



is affected by noise, in the form of output noise from the
vision tracking algorithm. This noise is introduced into the
system as an external disturbance vector that is formed by:

ξk = [ξ1k
>
. . . ξnk

>]>

where ξik = [ξiu, ξ
i
v]> i = 1, . . . , n. These disturbances

form the compact disturbance set Ξ ⊆ R2n with ξk ∈ Ξ,
upper bounded by ξ̄, where ||ξk|| ≤ ξ̄, ∀ξk ∈ Ξ. Therefore,
an actual system can be considered as:

sk+1 = f(sk, Vk) + ξk (8)

III. CONTROL DESIGN AND PROBLEM STATEMENT

The goal is to control the actual system (8) subject to
the visibility and control constraints of (7a)-(7b) and (6) to
reach to a compact image feature set that includes the desired
state sd = [s1d, . . . , s

n
d ]> ∈ Sset. In order to achieve this task

we use a nonlinear model predictive controller that consists
in solving iteratively an open-loop Optimal Control Problem
(OCP) w.r.t a control sequence Vf (k). The OCP of the IBVS-
MPC is given as follows:

min
Vf (k)

JN (sk, Vf (k)) = (9a)

min
Vf (k)

N−1∑
i=0

F (ŝ(k + i|k), V (k + i|k)) + E(ŝ(k +N |k))

subject to
ŝ(k + j|k) ∈ Sj , ∀j = 1, . . . , N − 1, (9b)
V (k + j|k) ∈ Vset, ∀j = 0, . . . , N − 1, (9c)
ŝ(k +N |k) ∈ Ef (9d)

where N denotes the prediction horizon and the set Ef

is the terminal set. F and E are the running and terminal
cost functions, respectively and are of quadratic form, i.e.,
F (ŝ, V ) = ŝ>Qŝ + V >RV and E(ŝ) = ŝ>P ŝ, with P ,
Q and R to be positive definite matrices. Particularly
we define Q = diag{q1, q2, · · · , q(2n−1), q(2n)},
R = diag{r1, r2, r3, r4, r5, r6} and P =
diag{p1, p2, · · · , p(2n−1), p(2n)}. The vector ŝ(k + j|k)
denotes the predicted state of the nominal system (5)
at sampling time k + j with j ∈ Z≥0. The predicted
state is based on the measurement of the image
features sk at a sampling time k, while applying a
sequence of control inputs {Vk, . . . , Vk+j−1}. Thus:
ŝ(k + j|k) = f(ŝ(k + j − 1|k), Vk+j−1). It holds that
ŝ(k|k) = sk. We distinguish the state of nominal system
that will be denoted as ŝ(·) with the state of actual system,
i.e. the system that is affected by disturbances which will
be denoted as s(·).
Lemma 1 [8]: The nominal system (5), subject to
constraints (7a)-(7b) and (6), is Lipschitz continuous in Sset

with Lipschitz constant 0 < Cf < ∞. More specifically in
the case of unknown depth parameter can be defined as:

Cf , 5
√

2 max

{
(
dtT̄z
zi∗

), (
2
√

2ω̄xdtmax(ū, v̄)

λ
),

(
2dtω̄xv̄

λ
), (dtω̄z), (

2dtω̄yū

λ
), (

2
√

2ω̄ydtmax(ū, v̄)

λ
), 1

}
(10)

And, when the depth parameter is known, it is given by:

Cf , 5
√

2 max

{
1, (

dtT̄zū

z∗
), (

2
√

2ω̄xdtmax(ūv̄)

λ
), (

2dtω̄yū

λ
),

, (
2
√

2ω̄ydtmax(ūv̄)

λ
), (

2dtω̄xv̄

λ
), (

dtλT̄x
z∗

), (
dtλT̄y
z∗

), (dtω̄z)

}
(11)

Lemma 2 [8]: The difference between the real state sk+j at
the time k+ j and the predicted state ŝ(k+ j|k) at the same
time under the same control sequence, is upper bounded by:

||sk+j − ŝ(k + j|k)|| ≤
j−1∑
i=0

(Cf )iξ̄ (12)

Lemma 3 [8]: The cost function F (s, V ) is lower bounded
by a K∞-function. In particular:

F (s, V ) ≥ min(q1, · · · , q2n, r1, · · · , r6)||s||2 (13)

Lemma 4 [8]: The cost function F (s, V ) is Lipschitz conti-
nuous in Sset × Vset, with Lipschitz constant CF , where:

CF = 2(n(ū2 + v̄2))
1
2 · σmax(Q) (14)

where σmax(Q) denotes the largest singular value of the Q.
Assumption 1: There is an admissible positively invariant

set E ⊂ Sset such that Ef ⊂ E , where E = {s ∈ Sset :
||s|| ≤ ε0} with ε0 being a positive parameter.

Assumption 2: Inside the Ef , there is a local controller
Vk = h(sk) ∈ Vset, ∀s ∈ E and a Lyapunov function E
such that E(f(sk, h(sk)))− E(sk) + F (sk, h(sk)) ≤ 0.

Assumption 3: The associated Lyapunov function for the
terminal region is Lipschitz in E , with Lipschitz constant
CE = 2ε0σmax(P ) for all s ∈ E . Considering that from
Assumption 1 we have: ||s|| = (|u1|2 + |v1|2 + · · ·+ |un|2 +
|vn|2)

1
2 ≤ ε0 for all s ∈ E .

Assumption 4: Inside the set E we have E(s) = sTPs ≤
αε, where αε = max{p1, · · · , p(2n)}ε20 > 0. Assuming that
E = {s ∈ Sset(N−1) : h(s) ∈ Vset} and taking a positive
parameter αεf such that αεf ∈ (0, αε), we assume that the
terminal set Ef = {s ∈ R3 : E(s) ≤ αεf} is such that
∀s ∈ E , f(s, h(s)) ∈ Ef .

A. Problem Statement

The solution of the Image based Model Predictive Control-
ler (9a)-(9d) at a time-step k provides an control sequence V ∗f
which equals to V ∗f (k) , [V ∗(k|k), . . . , V ∗(k+N−1|k)]. In
the classic IBVS-MPC approach, only the first control vector,
i.e V ∗(k|k) is applied to the system. At the next time-step
k+1, the VTA is computed and new vision measurements are
received and then the whole procedure is repeated again. In
this paper, we suggest that a portion of the computed control
sequence may be applied to the system and not only the first
vector. More specifically, suppose a triggering instant ki, at
which the VTA has been computed and the IBVS-MPC has
been solved. The control sequence that will now be applied
to the robot is of the form:

[V ∗(ki|ki), V ∗(ki + 1|ki), . . . V ∗(ki + di|ki)] (15)



for all di ∈ [1, ki+1 − ki] ∈ Z>1, where ki+1 is the
next triggering instant. During the time interval [ki, ki+1)
the control law is applied to the robot in an open-loop
fashion. But how large this time interval can be? This paper,
addresses this question and provides sufficient conditions for
finding the triggering periods di, or in other words sufficient
conditions for running the VTA and the computation of the
NMPC law.

IV. STABILITY ANALYSIS OF SELF-TRIGGERING
IBVS-MPC FRAMEWORK

We begin the stability analysis by assuming that at ki ,
k − 1 an event is triggered, the solution of the (9a)-(9d) at
this time results in an optimal control trajectory V ∗f (k−1) ,
[V ∗(k− 1|k− 1), . . . , V ∗(k+N − 2|k− 1)]. Based on this
optimal control trajectory, we can define a feasible control
input, i.e., for m = 0, . . . , N − 2 given by:

Ṽ (k + j|k +m) ={
V ∗(k + j|k − 1) for j = m, . . . , N − 2

h(ŝ(k + j|k +m)) for j = N − 1, . . . , N +m− 1
(16)

From the (9c) and with the help of Assumption 2, it follows
that for m = 0, . . . N − 2 we have Ṽ (k + j|k +m) ∈ Vset.
The stability analysis consists of two parts: (i) feasibility
property and (ii) Convergence property.

A. Feasibility of ST-IBVS-MPC

Let SIB be the set containing all the state vectors for
which a feasible control sequence exists that satisfies the
constraints of the optimal control problem. Now we are going
to find an upper bound ξ̄ for disturbances such that ŝ(k +
N |k +m) ∈ Ef for all m = 0, . . . , N − 2.

Theorem 1: Consider the IBVS system (8) that is subject
to constraints (7a)(7b) and (6). Assume that at ki , k − 1
an event is triggered, thus the VTA is activated, the OCP of
(9a)-(9d) is solved and a new control sequence is provided.
A partition of this control sequence, for m ∈ [0, . . . , N − 2]
drives and stabilizes the image features vector s to a set E
around the desired image features vector s∗, satisfying all
constraints, if and only if the disturbances are bounded by:

ξ̄ ≤
αε − αεf

CEC
(N−1)−m
f

∑m
i=0(Cif )

(17)

Proof: From Lemma 2 we can derive the following:

||ŝ(k +N − 1|k +m)− ŝ(k +N − 1|k − 1)|| ≤

≤ C(N−1)−m
f

m∑
i=0

(Cif )ξ̄

From the Lipschitz property of E(·) (Assumption 3) we get:

E(ŝ(k +N − 1|k +m))− E(ŝ(k +N − 1|k − 1))

≤ CE ||ŝ(k +N − 1|k +m)− ŝ(k +N − 1|k − 1)||

≤ CEC(N−1)−m
f

m∑
i=0

(Cif )ξ̄

Noticing that ŝ(k + N − 1|k − 1) ∈ Ef , from Assumption
4 we get E(ŝ(k + N − 1|k − 1)) ≤ αεf . We want ŝ(k +

N−1|k+m) ∈ E , thus from Assumption 4, it should satisfy
E(ŝ(k +N − 1|k +m) ≤ αε, so we get:

E(ŝ(k +N − 1|k +m) ≤ αεf + CEq(m)ξ̄ ≤ αε

with q(m) , C
(N−1)−m
f

∑m
i=0(Ci

f ). Thus, we obtain:

αεf + CEq(m)ξ̄ ≤ αε ⇒ ξ̄ ≤
αε − αεf

CEC
(N−1)−m
f

∑m
i=0(Cif )

(15)

which states that the set SIB is robustly positively invariant
for disturbances bounded by (15) for all m = 0, . . . , N − 2,
and from from Assumption 4 we get ŝ(k+N |k+m) ∈ Ef ,
which concludes the proof.

B. Convergence of ST-IBVS-MPC

At the time-step k − 1, the optimal cost is denoted as
J∗N (k−1) = JN (sk−1, V

∗
f (k−1)), which is evaluated under

the optimal control sequence. Analogously, the optimal cost
at a time-step k + m with m ∈ [0, N − 2] is denoted as
J∗N (k + m) = J∗(sk+m, V

∗
f (k + m)). Now let J̃N (k + m)

to denote the “feasible”cost, evaluated from the control
sequence Ṽ m

f (k−1), that is J̃N (k+m) = J̃N (sk+m, Ṽ
m
f (k−

1)). It is well known that in a real experiment with a real
robotic system, owing to the finite iteration’s number of
the optimization procedure, it is not possible to find the
exact optimal solution of (9a)-(9d) and always some sub-
optimality rate must be considered. Thus for the feasible
cost function defined above we consider a ”real”version of
it denoted by J̃ ′(·) and a sub-optimality rate denoted by B
such that B = J̃

J̃′ , B ∈ (0, 1]. Now, the difference between
the real-feasible sequence at time-step k+ j and the optimal
cost at time k − 1 using (16) is given by:

∆Jm = J̃ ′N (k +m)− J∗N (k − 1) =

= J̃N (k +m)− J∗N (k − 1) + J̃N (k +m)(
1

B
− 1) ≤

≤ CE(Cf )(N−(m+1))ξ̄ + LS(m)−

− LQ(m) + (
1

B
− 1)

(
LS(m) + LP (m) + max(p1, . . . , p2n)ε20

)
(16)

Where:

LS(m) = CF ·
N−(m+2)∑

i=0

(Cf )iξ̄,

LP (m) = max(p1, . . . , p2n, r1, . . . , r6)

N−(m+2)∑
i=0

||[ŝ(·), V ∗(·)]||

and

LQ(m) =

m−1∑
i=−1

min(q1, . . . , q(2n)r1, . . . , r6)||ŝ(k + i|k − 1)||

where we denote by :(·) = (k+i+m|k−1). The optimality
of the solution yields:

J∗N (k +m)− J∗N (k − 1) ≤ J̃ ′N (k +m)− J∗N (k − 1) (17)

C. The Self-triggered Framework

Consider that at time-step ki a measurement from VTA
is received and a new control input is calculated. The next
triggering time ki+1 , ki + di that is going to be found



should be such that the closed-loop system of IBVS-MPC
does not loose any of its desired performances. Thus, we
need the value function J∗N (·) to be decreasing. Given (16)
and (17), for some triggering instant ki and some time-step
di = m+ 1 with di ∈ [1, N − 1] we get:

J∗N (ki+1)− J∗N (ki) ≤ CE(Cf )(N−(di))ξ̄ + LS−

− LQ + (
1

B
− 1)

(
LS + LP + max(p1, . . . , p2n)ε20

)
(18)

Thus, the time instance di should be such that:

σLQ ≥ CE(Cf )(N−(di))ξ̄ + LS(m)+

+ (
1

B
− 1)

(
LS(m) + LP (m) + max(p1, . . . , p2n)ε20

)
(19)

with σ ∈ (0, 1). Plugging (19) and (18), it yields:

J∗N (ki+1)− J∗N (ki) ≤ (σ − 1)LQ(m) (20)

In view of (20), it can be concluded that the Lyapunov
function J∗N (·) has been proven to be decreasing, thus the
closed-loop system converges to the compact set Ef . Thus,
the next visual measurement needs to be triggered when (19)
is violated. The condition (19) should be checked for each
consecutive time-step, i.e., for di = 1, 2, . . . . This time-step
ki+1 also can be found beforehand at time ki, because the
term LQ(m) and LP (m) include only predictions of the
nominal system. The pseudo-code of the proposed real-time
self-triggering IBVS scheme is given in Algorithm1: At time

Algorithm 1 Self Triggered IBVS-MPC algorithm:
1: Triggering: . At triggering time ki
2: s(ki)← VTA . Trigger the VTA, get s(ki)
3: V ∗f (ki)← OCP(s(ki)) . Run OCP of (9a)-(9d)
4: Solve eq.(19) for di . Notice: m = di − 1
5: ki+1 = ki + di . The next triggering time
6: for i = 1→ di do
7: Apply the V ∗(ki + i|ki) to the robot.
8: goto Triggering.

ki the VTA is triggered, the OCP of (9a)-(9d) has run and
the control trajectory V ∗f (ki) for [ki, ki +N−1] is provided.
The solution of (19) will provide the next update time ki+1.
During the time interval i ∈ [ki, ki+1) the control trajectory
V ∗(ki+i|ki) is applied to the system in an open-loop fashion.
Next, at time ki+1, the VTA is triggered again, a new control
trajectory based on the current vision measurement s(ki+1)
is provided and the whole procedure is repeated again until
the camera reaches to the desired position. Now, we state the
result for the ST-IBVS-MPC framework:

Theorem 2: Consider the Image Based Visual Servo sys-
tem (8) that is subject to constraints (7a)(7b) and (6). The
triggering times di provided by (19) and the IBVS-MPC law
provided by (9a)-(9d) which is applied to the system in an
open-loop fashion during the inter-sampling periods, drive
the closed-loop system towards the compact set Ef , where it
is ultimately bounded.

V. EXPERIMENTAL RESULTS

To verify the efficiency of the proposed IBVS scheme,
two experiments were performed using a YouBot mobile-
manipulator system equipped with a USB camera as depicted
in Fig.3.

Fig. 3: The experimental setup (a) The initial and (b) The desired
configuration.

A. Experimental Results

The comparison was performed via two experimental
procedures. First, a conventional IBVS-MPC scheme was
employed, while in the second experiment, the Self Triggered
IBVS-MPC scheme proposed in this paper was employed.
Comparisons are made to show the efficacy and performance
of the proposed self triggered IBVS-MPC w.r.t the classic
IBVS-MPC. The desired pose of the target wrt the camera
frame in both experiments is p∗ = [0, 0, 0.6,−0.1, 0, 0]. The
desired features coordinates extracted by the desired image
is given by: s∗ = [−61,−38, 60,−38,−56, 95, 62, 92]. The
initial configuration of the target w.r.t the camera and the
initial feature coordinates in both experiments are given
by: p (0) = [1.74, 0.16, 2.81, 0.12, 0,−0.69] and s (0) =
[−68,−196,−25,−177− 84,−136,−41,−122] respective-
ly. It should be noticed that the above initial configuration,
can be considered as a rather challenging task for IBVS
schemes, owing to the rotation about the z and the x axes
of the camera frame (see Fig.3). The visibility constraints of
the system due the resolution of the image plane (640×480),
are defined as:[

u
¯

= −319
v
¯

= −239

]
≤
[
u(t)
v(t)

]
≤
[
ū = 319
v̄ = 239

]
(21)

The prediction horizon and the sampling time in both
experiments, are equal to N = 6 and dt = 0.1 respectively.
The matrices P , Q and R of the OCP (9a)-(9d) are equal
for both experiments. Also the control input is bounded by
0.5 m

sec for the translational and 0.5 rad
sec for rotational velocity.

In Fig.4 the image error evolution in both experiments are
depicted. It can be witnessed that in both cases, the image
errors converge to zeros. As it was expected, the features
were constrained within the camera FOV as presented in Fig.
5. In Fig.6, the triggering instants in the case of ST-IBVS-
MPC are captured. When the vertical axis has the value 1,
the VTA is triggered and a new image vector is calculated,



Fig. 4: The feature coordinate errors: the ST-IBVS-MPC and Clas-
sic IBVS-MPC are presented with blue and red color respectively.

Fig. 5: The evolution of the features on the image plane. (a) ST-
IBVS-MPC, (b) Classic IBVS-MPC.

consequently the IBVS-MP Controller is running and a new
control input trajectory is computed. For value 0, the control
law is implemented on the system in an open-loop fashion
using the rest of the last computed control input trajectory.
Notice that in the case of classic IBVS-MPC, the VTA is
triggered at each sampling time. It can be noticed that the

Fig. 6: The triggering instants for the case of ST-IBVS-MPC.

triggering instants when the camera is close to the desired
position w.r.t the target are more frequent. This fact is easily
interpretable, because near the desired position, the system
becomes more demanding due to the F.O.V constraints and
the disturbances, thus the need for new measurements and
calculation of a new control input is increased. However,
using the self triggered condition proposed in this work, the
triggering of the VTA and the MPC controller have been
reduced by 56% (405 triggering instants instead of 911) w.r.t
the traditional IBVS-MPC.

VI. CONCLUSIONS

In this work a novel IBVS-MPC scheme is presented. A
mechanism for the decision of the VTA triggering and the

calculation of a new control input is designed and implemen-
ted. This results in the reduction of the computational effort,
energy consumption and increases in this way the autonomy
rate of the system. Thus it can be used effectively in small
autonomous robotic systems which perform long lasting in-
spection tasks. Finally, future research efforts will be devoted
towards experimental testing of the proposed control scheme
on autonomous system with high external disturbances such
as Underwater Vehicle-Manipulator System.
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