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Abstract— In this paper, robustness analysis of constrained
Image Based Visual Servoing based on Nonlinear Model Pre-
dictive Control (NMPC) is presented. It is known, that real
applications such an aerial or a fast underwater robotic systems,
suffer from the presence of external disturbances. These kinds
of disturbances are inevitable in the physical systems, so it
is of great interest to employ robust controllers. Therefore,
a rigorous robustness analysis should be conducted. In this
paper, the Image Based Visual Servoing system under the MPC
framework is proven to be Input-to-State Stable (ISS) and
a permissible upper bound of the disturbances is provided.
Finally, the validity of the theoretic results is illustrated through
a simulated example.

I. INTRODUCTION

Over the last decades, visual servoing has gained a lot
of research interest in motion control systems. In general,
it employs the visual information of a camera as feedback
to determine the required control signal. Structurally, visual
servoing can be classified as: (i) Position-Based Visual
Servoing (PBVS), where the visual features extracted from
the image are used to estimate the 3D pose of the robot wrt
the target; (ii) Image-Based Visual Servoing (IBVS), where
the control inputs are determined directly on the 2D image
plane based on the error of the image features between the
current and desired images, and (iii) Hybrid Visual Servoing,
where 3D PBVS is combined with 2D IBVS [1], [2].

In this paper, the IBVS scheme is considered, as it is more
effective than the other two, owing to its inherent robustness
against camera calibration imperfections. However, handling
constraints is yet another issue of consideration. Constraints
in this particular systems are, inter alia, the visibility cons-
traints imposed from the fact that the target must be in the
field-of-view of the camera during the motion of the robot,
[3], or the 3D constraints of the physical system, such as
actuator limits and nonholonomic constraints. In view of
the difficulty to handle hard constraints, different methods
have been developed. More specifically, in [4] and [5] path
planning strategies on the features in the image plane have
been proposed and in [6] a path planning algorithm via LMI
optimization has been studied.

An approach for effectively handling constraints for real
time applications is via Nonlinear Model Predictive Control,
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due to its inherent virtues [7],[8]. The IBVS via NMPC
framework has been studied in [9], [10], [11], [12]. In
[10], the Visual Predictive Control (VPC) scheme has been
proposed in which the workspace limitations, the visibility
constraints and the actuators limits are formulated as state,
output, and input constraints. The image based obstacle
avoidance problem for an UAV using NMPC was tackled
in [13].

Other issues for consideration are the external disturbances
and the uncertainties of the system. For real applications
in robotic systems, such as controlling underwater vehicles,
model uncertainties and external disturbances are inevitable.
Notice, that in [14], the authors provided a robustness sta-
bility analysis for the classical IBVS controller with respect
to (wrt) the depth parameter. In this work, the absence of
the depth parameters is introduced to the system as a distur-
bance. In the aforementioned IBVS via NMPC frameworks
only nominal stability has been considered. In particular
in [10], in the simulation part the authors have considered
noise in the parameters of the visual features. However, no
robustness analysis was performed. In this paper, a rigorous
robustness analysis of the IBVS via NMPC is conducted and
additionally a permissible upper bound of the disturbances
is derived. Regarding the stability analysis of IBVS, it is
worth mentioning that only local asymptotic stability can
be obtained for classical IBVS [1]. For that reason, in this
paper, only local stability analysis is considered. Moreover,
the analysis will be using the Input-to-State Stability (ISS)
notion, due to the persistent disturbances which leads to
ultimate boundedness results. More specifically, the ISS
stability wrt disturbances of the overall framework is proven
and it has been shown that the visual features on the image
plane are converging to a bounded terminal set that includes
the desired position of the visual features on the image plane.
Some relevant works on robust NMPC for general nonlinear
systems are, [15], [16].

The remainder of the paper is organized as follows. The
mathematical modeling of the IBVS as well as the problem
statement, are presented in Section II. Section III, accom-
modates the main results of the paper namely the robustness
analysis of the NMPC for image based visual servoing.
Furthermore, this analysis leads to the determination of the
permissible upper bound of the disturbances. In Section IV,
the simulation results are presented. Finally, the section V
summarizes the results of this paper and indicates further
research endeavors.



II. PROBLEM FORMULATION

A. Mathematical Modelling

In this section, the mathematical formulation of the image
based visual servoing problem is presented for a pinhole
camera model. The model of the IBVS is going to be utilized
for the solution of the optimal control problem of the NMPC.

Let [Xc, Yc, Zc]
> be the axes of the camera frame C

attached at the center of the camera Oc. The coordinates
of the image frame I are given by [u, v]> with OI denoting
the center of the image, as depicted in Fig.1. Notice that the
Zc axis of the camera frame is perpendicular to the image
plane transversing OI . A 3D point P = [x, y, z]> wrt the

Fig. 1. The coordinate frame of the camera system.

camera frame will appear in the image plane as a 2D image
feature s = [u, v]> with coordinates [1]:

s =

[
u
v

]
=
λ

z

[
x
y

]
(1)

where λ is the focal length of the camera as it is shown
in Fig.1. The time derivative of the coordinates of the fixed
point P , during motion of the camera wrt the camera frame,
are as follows [1]:

Ṗ = −Ω× P − T (2)

Let V =

[
T
Ω

]
= [Tx, Ty, Tz, ωx, ωy, ωz]

> denotes the

translational and angular velocities of the camera. Using (1)
and (2) the time derivative of the image feature in the image
plane has the following vector form:

ṡ = LsV (3)

where:

Ls(u, v, z) =

[
−λz 0 u

z
uv
λ −λ

2+u2

λ v

0 −λz
v
z

λ2+v2

λ −uvλ −u

]
(4)

is called the interaction matrix Ls related to s. For controlling
a 6 DOF motion, at least four image features must be
available [1], thus using n ≥ 4 image features, we obtain:

ṡ1
ṡ2
...
ṡn

 =


Łs1
Łs2

...
Łsn

V (5)

which represents the model of the overall system. The vector
V is the control input of the system. For brevity, the state
vector and interaction matrix of the system for n image
features is denoted by s = [s1, s2, · · · , sn]> and Ls =
[Łs1 ,Łs2 · · · ,Łsn ]>, respectively. The Newton-Euler method

is used for approximating (5), in order to obtain the model
of the system in the discrete-time frame:

sk+1 = sk + dt(L̂sk · Vk) (6)

with dt to be the sampling period. It is pointed out that
the L̂sk is depended on z parameter, thus two cases can be
considered. In the first case, called constant z, the value of
the z in the L̂sk is replaced by its desired z = z∗ thus,
the L̂sk depends only on the values of the image features.
Notice that in the case of constant z the stability results are
locally and are sensible in a neighborhood around the desired
z [14]. If the z parameter is available in each sampling time,
is called the known z case. For the rest of paper we denote
sk = [s(1,k), s(2,k), · · · , s(n,k)]> to be the vector of the state
at a time-step k. The vector of the velocity of the came-
ra Vk = [T(x,k) T(y,k) T(z,k) ω(x,k) ω(y,k) ω(z,k)]

>

will denote the input of the system at a time-step k. The
nominal system (6) can be written in stack vector form as:

sk+1 = f(sk, Vk) (7)

The requirements of system (7), also named as visibility
constraints, ensure that the image feature s will not leave
the image-plane during the control operation are given as:

u
¯
≤ u ≤ ū (8a)

v
¯
≤ v ≤ v̄ (8b)

where ū and v̄ are the maximum and u
¯

and v
¯

are the
minimum pixels wrt u and v coordinates of the image-
plane respectively. The state constraints (8a)-(8b) form the
state constraint set Sset ⊆ R2n i.e., sk ∈ Sset. The control
constraint set Vset is compact and it is given by:

Vk ∈ Vset ⊆ R6 (9)

The constraints of the input are of the form |Tx| ≤ T̄x, |Ty| ≤
T̄y , |Tz| ≤ T̄z , |ωx| ≤ ω̄x, |ωy| ≤ ω̄y and |ωz| ≤ ω̄z . where
( ·̄ ) denotes the upper bound for each of the variables. We
set ‖Vk‖ ≤ V̄ , with V̄ to be the upper bound for the control
input of the system. The nominal system (7) is Lipschitz
continuous in Sset with Lipschitz constant 0 < Cf < ∞.
More specifically:

Lemma 1: The nominal model (7), subject to constraints
(8a)-(8b) and (9), is locally Lipschitz in s for all sk ⊆ Sset.
For the case of constant z (z = z∗) the Lipschitz constant is
defined as:

Cf ,5
√

2 max

{
1, (

dtT̄z

z∗
), (

2
√

2ω̄xdtmax(ūv̄)

λ
),

, (
2
√

2ω̄ydtmax(ūv̄)

λ
), (

2dtω̄yū

λ
), (

2dtω̄xv̄

λ
), (dtω̄z)

}

Also, for the case of known z (z = z(t)) the Lipschitz
constant is defined as:

Cf , 5
√

2 max

{
1, (

dtT̄zū

z∗
), (

2
√

2ω̄xdtmax(ūv̄)

λ
), (

2dtω̄yū

λ
),

, (
2
√

2ω̄ydtmax(ūv̄)

λ
), (

2dtω̄xv̄

λ
), (

dtλT̄x

z∗
), (

dtλT̄y

z∗
), (dtω̄z)

}



Note that this Lipschitz constant is independent of the
number of the features in (7). Assume that system (7)
is affected by disturbances whose vector form is: ξ =
[ξ(u,1), ξ(v,1), · · · , ξ(u,n), ξ(v,n)]>. Therefore, a perturbed
version of the system should be also considered:

sk+1 = f(sk, Vk) + ξk (10)

with ξ ∈ Ξ ⊂ R2n and Ξ to be a compact set. Assume also,
that ||ξk|| ≤ ξ̄, where ξ̄ is an upper bound for this set. This
perturbation set is defined on the 2D image plane and can
be written in the 3D Cartesian space using (1) as:

λx

z
− ξ̄ ≤ λx+ dx

z + dz
≤ λx

z
+ ξ̄

λy

z
− ξ̄ ≤ λy + dy

z + dz
≤ λy

z
+ ξ̄ (11)

where dx, dy and dz are the coordinates of the external
disturbances wrt the camera frame in the 3D frame.

B. Control Design and Objective

The aim of this section is to control the real system (10)
subject to the state constraints of (8a)-(8b) and the control
constraints (9) to reach to a desired compact set that includes
the desired state sd = [s1 s2 · · · sn]> ∈ Sset. It can
be proven that, using a NMPC control law, the state of the
system converges to this desired set. Inside this terminal set,
an auxiliary terminal controller will be equipped to drive
the system to the desired point, that could be a classic
image based controller as the one used in [1]. The predictive
controllers consist in solving iteratively an open-loop optimal
control problem which is based on the actual state of the
system sk, at a sample time k, with respect to a control
sequence Vf (k) and provide an optimal control sequence
V ∗f (k). The optimal control problem of the NMPC is given:

min
Vf (k)

JN (sk, Vf (k)) = (12a)

min
Vf (k)

i=N−1∑
i=0

F (ŝ(k + i|k), V (k + i|k)) + E(ŝ(k +N |K))

subject to
ŝ(k + j|k) ∈ Sj , ∀j = 1, . . . , N − 1, (12b)
V (k + j|k) ∈ Vset, ∀j = 0, . . . , N − 1, (12c)
ŝ(k +N |k) ∈ Ef (12d)

where N denotes the prediction horizon, the set Ef is the
terminal constrained set and F and E are the running and
terminal cost functions, respectively. The vector ŝ(k + j|k)
denotes the predicted state of the nominal system (7) at
sampling time k+ j with j ≥ 0. The predicted state is based
on the measurement of the state of the perturbed system sk
at a sampling time k, while using the nominal model and a
sequence of control inputs {Vk, . . . , Vk+j−1}. Therefore, it
is: ŝ(k + j|k) = f(ŝ(k + j − 1|k), Vk+j−1). Notice, that it
holds ŝ(k|k) = sk. Moreover, it is shown that the difference
between the state sequence of the actual system (10) and the
predicted sequence of the system, is in fact, bounded:

Lemma 2: The difference between the real state sk+j at
the time k+ j and the predicted state ŝ(k+ j|k) at the same

time under the same control sequence, starting at the same
initial state sk is upper bounded by:

||sk+j − ŝ(k + j|k)|| ≤
j−1∑
i=0

(Cf )iξ̄ (13)

In Lemma 2, the difference between the real state trajectory
of system (10) and the predicted state trajectory of the
nominal system is given. To address this divergence, we
used a restricted constrained set Sj ⊆ Sset instead of the
state constrained set Sset into (12b). For more details the
reader is referred to [15] and [16]. This constraint tightening
technique is utilized in order to guarantee that the evolution
of the state of the perturbed system, when a control
sequence computed by the NMPC is applied, will actually
satisfy the state constrained set Sset. The cost function F (·)
as well as the terminal cost E(·) are of quadratic form,
i.e., F (ŝ, V ) = ŝ>Qŝ + V >RV and E(ŝ) = ŝ>P ŝ,
with P, Q and R to be positive definite matrices.
Particulary we define Q = diag{q1, q2, · · · , q(2n−1), q(2n)},
R = diag{r1, r2, r3, r4, r5, r6} and P =
diag{p1, p2, · · · , p(2n−1), p(2n)}. For the running cost
function F, it is easy to show that F (0, 0) = 0, as well as:

Lemma 3: The cost function F (s, V ) is lower bounded
by a K∞-function. In particular:

F (s, V ) ≥ min(q1, q2, · · · , q(2n−1), q(2n), r1, r2, · · · , r6)||s||2
(14)

Taking into account (8a)-(8b) and (9), it can be concluded
that the sets Sset and Vset are bounded, thus the following
result can be obtained:

Lemma 4: The cost function F (s, V ) is Lipschitz conti-
nuous in Sset × Vset, with Lipschitz constant CF , where:

CF = 2(n(ū2 + v̄2))
1
2 · σmax(Q) (15)

and σmax(Q) denotes the largest singular value of the Q.
Assumption 1: For the nominal system (7), there is an

admissible positively invariant set E ⊂ Sset such that the
terminal region Ef ⊂ E , where E = {s ∈ Sset : ||s|| ≤ ε0}
with ε0 being a positive parameter.

Assumption 2: We assume that in the terminal set Ef , the-
re is a local controller Vk = h(sk) ∈ Vset, ∀s ∈ E and an
associated Lyapunov function E such that E(f(sk, h(sk)))−
E(sk) + F (sk, h(sk)) ≤ 0.

Assumption 3: The associated Lyapunov function for the
terminal region is Lipschitz in E , with Lipschitz constant
CE = 2ε0σmax(P ) for all s ∈ E . Considering that from
Assumption 1 we have: ||s|| = (|u1|2 + |v1|2 + · · ·+ |un|2 +
|vn|2)

1
2 ≤ ε0 for all s ∈ E .

Assumption 4: Inside the set E we have E(s) = sTPs ≤
αε, where αε = max{p1, p2, · · · , p(2n−1), p(2n)}ε20 > 0.
Assuming that E = {s ∈ Sset(N−1) : h(s) ∈ Vset} and
taking a positive parameter αεf such that αεf ∈ (0, αε), we
assume that the terminal set Ef = {s ∈ R3 : E(s) ≤ αεf}
is such that ∀s ∈ E , f(s, h(s)) ∈ Ef .

III. INPUT-TO-STATE STABILITY FOR CONSTRAINED
IBVS-MPC

In this section the Input-to-State stability analysis for the
closed-loop image based visual servoing (10) via NMPC will



be presented. We begin by denoting V ∗F (k−1) as the optimal
solution that results from (12a)-(12d) at a time-step k − 1.
We, also, denote a feasible control sequence Ṽ (k + j|k) of
the optimization problem at time-step k, such as:

Ṽ (k + j|k) =

{
V ∗(k + j|k − 1) for j = 0, . . . , N − 2

h(q̂(k +N − 1|k)) for j = N − 1
(16)

From (12c) and Assumption 2 is clear that Ṽ (k+j|k) ∈ Vset.

A. Feasibility of constrained IBVS-MPC

At this point we want to find a bound ξ̄ for the uncertain-
ties, such as, if DN is the set of states of the system where
the MPC optimization problem is feasible, then the closed-
loop system in DN is stable. That means that if sk ∈ DN

then sk+1 = f(sk, V
∗
k ) + ξk+1 ∈ DN , for all ξk+1 ∈ Ξ.

Theorem 1: Consider the Image Based Visual Servo Sys-
tem of (10) that is subject to constraints (8a)-(8b) and (9).
The Control input that provided by NMPC 12a-12d drives
and stabilizes the image features vector s to a set E around
the desired image features vector s∗, without violating the
constraints, If and Only If the disturbances are bounded by:

ξ̄ ≤
αε − αεf
CE · CN−1f

(17)

Proof: First it will be shown that:
||ŝ(k|k)− ŝ(k|k − 1)|| = ξk ≤ ξ̄
||ŝ(k + 1|k)− ŝ(k + 1|k − 1)|| =
= ||f(ŝ(k|k))− f(ŝ(k|k − 1))||
≤ Cf (||ŝ(k|k)− ŝ(k|k − 1)||) ≤ Cf · ξ̄

...

||ŝ(k +N − 1|k)− ŝ(k +N − 1|k − 1)|| ≤ CN−1
f · ξ̄

From Assumption 3 we have:

E(ŝ(k +N − 1|k))− E(ŝ(k +N − 1|k − 1)) ≤
≤ CE ||ŝ(k +N − 1|k)− ŝ(k +N − 1|k − 1)|| ≤ CE · CN−1

f · ξ̄

For the nominal system and based on the optimal solution
V ∗(k + j|k − 1) we have: E(ŝ(k + N − 1|k − 1)) ∈ Ef .
Therefore, taking into account Assumption 4:

E(ŝ(k +N − 1|k)) ≤ αεf + CE · CN−1f · ξ̄

we want E(ŝ(k + N − 1|k)) to belong to the set E , thus
from Assumption 4 it must satisfy E(ŝ(k+N − 1|k)) ≤ αε,
which leads to:

E(ŝ(k +N − 1|k)) ≤ αεf + CE · CN−1f · ξ̄ ≤ αε

Therefore, if the uncertainties of the system are bounded by
ξ̄ ≤ αε−αεf

CE ·CN−1
f

then E(ŝ(k+N − 1|k)) belongs to the set E ,

and from Assumption 4 we get E(ŝ(k+N |k)) ∈ Ef , which
concludes the proof.

B. Convergence of constrained IBVS-MPC

In the following we will show that the states of the pertur-
bed system are converging to the terminal set. Consider the
optimal cost J∗N (k− 1) = J∗(sk−1, V

∗(k− 1)) from (12a),
at the time-step (k − 1) as a Lyapunov function candidate.

Consider, also, the cost of the feasible sequence at time-
step k as J̃N (k) = J̃(sk, Ṽ (k)). We denote by s̃(k + i|k)
the “feasible” state of the system which accounts for the
predicted state at time-step k+ i, based on the measurement
of the real state at time-step k, when the feasible control
sequence Ṽ (k + i|k) from (16) is used. We want to show
that in the feasible set of states, DN , the closed loop of
the image based visual servoing via NMPC is input to state
stable for all s ∈ DN . The difference between the optimal
cost and the feasible cost is:

∆J = J̃N (k)− J∗
N (k − 1) =

=

i=N−1∑
i=0

F (s̃(k + i|k), Ṽ (k + i|k)) + E(s̃(k +N |k))

−
i=N−1∑

i=0

F (ŝ(k + i− 1|k − 1), V ∗(k + i− 1|k − 1))

− E(ŝ(k +N − 1|k − 1)) =

i=N−2∑
i=0

F (s̃(k + i|k), Ṽ (k + i|k))

− F (ŝ(k + i|k − 1), V ∗(k + i|k − 1))

+ F (s̃(k +N − 1|k), Ṽ (k +N − 1|k))

− F (ŝ(k − 1|k − 1), V ∗(k − 1|k − 1))

+ E(s̃(k +N |k))− E(ŝ(k +N − 1|k − 1))

where Ṽ (k + N − 1|k) = h(ŝ(k + N − 1|k)) taken from
(16) and Ṽ (k+ i|k) = V ∗(k+ i|k−1) for i = 0, . . . , N −2.
Also from Lemma 4 combined with Lemma 2 we get:

i=N−2∑
i=0

F (s̃(k + i|k), Ṽ (k + i|k))

− F (ŝ(k + i|k − 1), V ∗(k + i|k − 1))

≤ CF ·
i=N−2∑

i=0

Ci
f · ξ̄

From Assumption 3 it yields:

E(s̃(k +N |k))− E(ŝ(k +N − 1|k − 1))

= E(s̃(k +N |k))− E(s̃(k +N − 1|k))

+ E(s̃(k +N − 1|k))− E(ŝ(k +N − 1|k − 1))

≤ E(s̃(k +N |k))− E(s̃(k +N − 1|k)) + CEC
N−1
f ξ̄

We used the instantaneous difference of the predictive state
ŝ(k+N − 1|k) and the feasible state s̃(k+N − 1|k− 1) at
the time-step k +N − 1 such that:

||s̃(k +N − 1|k − 1)− ŝ(k +N − 1|k)|| ≤ CN−1f ξ̄

Therefore, we obtain:

∆J ≤

(
CF

i=N−2∑
i=0

Ci
f + CEC

N−1
f

)
ξ̄+

+

[
F (s̃(k +N − 1|k), h(ŝ(k +N − 1|k)))

+ E(s̃(k +N |k))− E(s̃(k +N − 1|k))

]
− F (ŝ(k − 1|k − 1), V ∗(k − 1|k − 1))



Finally, taking into account the Assumption 2 and using (14):

∆J ≤

(
CF

i=N−2∑
i=0

Ci
f + CEC

N−1
f

)
ξ̄−

− F (ŝ(k − 1|k − 1), V ∗(k − 1|k − 1))

≤

(
CF

i=N−2∑
i=0

Ci
f + CEC

N−1
f

)
ξ̄−

−min(q1, q2, · · · , q(2n), r1, · · · , r6)||ŝ(k − 1|k − 1)||2

From the optimality of the solution, we derive the following:

∆J∗ = J∗N (k)− J∗N (k − 1) ≤ ∆J (18)

IV. SIMULATION RESULTS

A free flying pinhole camera wrt a fixed target in the
3D cartesian space is assumed for the simulation results.
In these simulations we assume that disturbances are
affecting the systems and comparisons are made to verify
the robustness of the scheme. For all of the presented
simulations, the sampling period dt is equal to 0.04. The
prediction horizon N as well as the focal length λ are
equal to N = 10 and λ = 1 respectively. Also the value
of αεf is taken to be equal to zero. The target comprised
of four feature points on a vertical plane, forming a square
with edge 0.1 m. The desired pose of the target wrt the
camera frame Oc is Pd/Oc

= [0, 0, 0.5, 0, 0, 0]. The desired
image features are: s∗ = [u∗1, v

∗
1 , u
∗
2, v
∗
2 , u
∗
3, v
∗
3 , u
∗
4, v
∗
4 ] =

[−0.2,−0.2, 0.2,−0.2,−0.2, 0.2, 0.2, 0.2]. The initial
pose of the target wrt the camera frame is
Pinit/Oc

= [0.0894, 0.116, 0.6565,−1.3208, 0,−1.9008].
The initial image features are: s =
[−0.008, 0.017, 0.258, 0.038,−0.009, 0.3413, 0.2774, 0.3332].
Note that in this configuration the classical IBVS with
constant z parameter (z = z∗) leads to failure, because
during the control operation the image features leaves the
image plane. The visibility constraints of the system are
defined by (see Fig.2):[

u
¯

= −0.5
v
¯

= −0.38

]
≤
[
u(t)
v(t)

]
≤
[
ū = 0.5
v̄ = 0.38

]
(19)

Fig. 2. (a) The initial configuration in 3D space. The initial and desired
configuration of the camera are presented by red and green color respectively
(b) Image plane at initial time. The initial and desired position of the target
on the image plane are denoted by blue and green lines respectively. Note
that the target during the control operation should remain in the image plane.

The matrix P is taken to be the identity ma-
trix I8×8, and the matrices R and Q are defined as
R = diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01) and Q =

diag(5, 5, 5, 5, 5, 5, 5, 5). Also the control input is assumed
to be bounded by 0.2 m/s for the translational velocity and
0.2 rad/s for the rotational velocity.

A. The case of “constant z”

The Lipschitz constant, using Lemma1 is calculated as:
Cf = 1.11313708. In this step we choose ε0 = 0.1. Consi-
dering Assumption1, which for each image feature, results in
a circle around the desired position of the image feature in
image plane with radius equal to 0.025. From Assumption
3 and 4 we have CE = 0.2 and αε = 0.01. Finally,
using (17) the allowable upper bound of the disturbances
is ξ̄ = 0.01646. In order to verify that, first we add a
perturbation to the system bounded by ξ̄ = 0.01635 which
is smaller than the computed one. It can be witnessed that
all image errors in the end of the control operation are
smaller than 0.025, thus, the state of the system reaches and
is staying inside the desired terminal set. Furthermore, the
camera reaches the desired pose in the 3D space, see Fig. 3.

Fig. 3. Response of the “constant z” system, under disturbance bounded
by ξ̄ = 0.01635. The camera reaches the desired position in 3d space and
the image errors will reaches and staying in the expected terminal set.

Let the system to be affected by disturbances bounded
by ξ̄ = 0.017 which is bigger than the computed allowable
one. It can be seen that the image errors in the end of the
control operation leave the pre-desired terminal set (see Fig.
4). Thus, the simulation verifies our theoretic results.

B. The case of “known z”

Using Lemma 1 we get: Cf = 1.11313708. Choosing ε0 =
0.1 yields to CE = 0.2 and αε = 0.01. the upper bound of
the allowable disturbance calculated by (17) is w̄ = 0.01646.
We assume a disturbance affecting the system bounded by
ξ̄ = 0.0162 which is smaller that the computed one. It is
evident that all of the image features are reaching and staying
in the expected terminal set, see Fig. 5. Adding a bigger
disturbance to the system bounded by ξ̄ = 0.0169 which is
bigger than the computed allowable one, the image features
fail to stay in the expected terminal set, see Fig 6.



Fig. 4. Response of the “constant z” system under disturbance ξ̄ = 0.017.
The image errors are not staying in the expected terminal set.

Fig. 5. Response of the “known z” system under disturbance ξ̄ = 0.0162.
The camera reached to the desired position in 3d space and the image errors
will reach and stay in the expected terminal set.

Fig. 6. Response of the “known z” system under disturbance ξ̄ = 0.0169.
The image errors did not stay in the expected terminal set.

V. CONCLUSIONS

In this paper, an Image Based Visual Servoing via Non-
linear Model Predictive Control framework with robustness
analysis was proposed. More particularly, external, bounded,
additive disturbances that are affecting the nominal system
were considered. The robustness analysis for image based
nonlinear predictive controller was conducted and an permis-
sible upper bound for the disturbances was validated. Future
work will involve an experimental application that validates
the theoretical results.
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