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Abstract—This work presents a robust Nonlinear Model Pre-
dictive Control (NMPC) scheme for autonomous navigation of
underwater robotic vehicles operating in a constrained workspace
including static obstacles. In particular, the purpose of the
controller is to guide the vehicle towards specific way points with
guaranteed input and state constraints. Various constraints such
as: obstacles, workspace boundaries, predefined upper bounds for
the velocity of the robotic vehicle as well as thruster saturations
are considered during the control design. Moreover, the proposed
control scheme is designed at dynamic level and incorporates the
full dynamics of the vehicle in which the ocean currents are also
involved. Hence, taking the thrusts as the control inputs of the
robotic system and formulating them accordingly, the vehicle
exploits the ocean current dynamics, when these are in favor
of the way-point tracking mission, resulting in reduced energy
consumption by the thrusters. The robustness of the closed-
loop system against parameter uncertainties has been analytically
guaranteed with convergence properties. The performance of the
proposed control strategy is experimentally verified using a 4
Degrees of Freedom (DoF) underwater robotic vehicle inside a
constrained test tank with sparse static obstacles.

Index Terms—Autonomous Underwater Vehicles, Robust Mo-
tion Control, Model Predictive Control.

I. INTRODUCTION

During the last decades, considerable progress has been
made in the field of Autonomous Underwater Vehicles
(AUVs), with a significant number of positive results in a
variety of marine activities [1]. Applications such as ocean
forecasting, ecosystem monitoring, underwater inspection and
surveillance, oceanography are indicative examples of appli-
cations that require the underwater robots to operate under
various constraints and increased level of autonomy and en-
durance [2].

On the design side, the endurance of an underwater system
can be increased by improving the energy storage units (e.g.,
larger capacity batteries) or reducing the vehicle’s drag by
design [3]. However, such approaches may solve partially the
problem, due to current technology limitations and design con-
straints. Therefore, alternative approaches for energy reduction
may considered. In general, the energy intake of an underwater
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vehicle is divided in two parts: i) the hotel load which is
defined as the energy consumption of the on-board devices
and processing effort, and ii) the energy used by the propulsion
system (e.g., thrusters) [2]. The hotel load reduction can be
achieved by employing low power devices and lean algorithms
that do not require significant processing effort. On the other
hand, the optimization of the thrust energy consumption, is
mainly a path planning problem where the vehicle must reach
the desired goal in an energy optimal manner.

Energy minimization via mission planning has been studied
in the past and still remains an open research issue for
the underwater robotics community. The ocean currents may
significantly affect the vehicle motion and must be taken under
consideration in the control design [4]. The importance of
utilizing ocean currents in underwater vehicle operation was
emphasized in [5], where a genetic algorithm planner was
proposed for the design of a path with minimum energy
requirements. Other approaches based on the A∗ search al-
gorithm have been proposed in the literature for designing an
energy efficient path under the consideration of ocean current
information and constant thrust power [6], [7]. Alternative
methods for the path planning of underwater vehicles are
based on Rapidly Exploring Random Trees (RRTs), where the
workspace is explored in order to obtain an obstacle free path
for an AUV [8]. The majority of the aforementioned planning
techniques are based on off–line optimization schemes, which
consider static or quasi–static operational environments. Their
output is often a set of way-points or trajectories, which
are optimal with respect to the energy consumption, while
satisfy certain environmental constraints. However, in real–
time missions, the vehicle operates in a partially known and
dynamic environment where the knowledge of the operating
workspace is constantly updated on–line via the vehicle’s
on–board sensors (e.g multi beam imaging sonars, on-line
ocean current estimators). In these cases, the underwater
vehicle must re-calculate its path on–line according to possible
environmental changes (i.e., new obstacles, other vehicles or
humans operating in proximity etc.).

On the other hand, motion control of underwater vehicles
is a highly nonlinear problem, where multiple input and state
constraints are imposed to the system. Classical approaches
such as local linearization and input-output decoupling have
been used in the past to design motion controllers for un-
derwater vehicles [9]. Nevertheless, the aforementioned meth-
ods yielded poor closed loop performance and the results
were local, around only certain selected operating points. In
the same context, based on a combined approach involving
Lyapunov theory and backstepping, various model-based non-
linear controllers have been proposed in the literature requiring
a very accurate knowledge of the vehicle dynamic parameters,



which in most cases is quite difficult to obtain [10], [11]. In
these control approaches, the effect of sea currents was ignored
or, if considered, the inherent dynamic model uncertainties
were ignored.

Dynamic model uncertainties of underwater robotic vehicles
have been mainly compensated by employing adaptive control
techniques [12]. However, owing to the sensitivity of the afore-
mentioned controllers on unknown parameters, their capability
in a real time experiment remains questionable. Additionally,
experimental results employing an adaptive controller were
presented in [13], where a priori knowledge of the dynamic
parameters was requested. Sliding mode theory was an alterna-
tive method used in the past to deal with dynamic parameters’
uncertainties [14]–[16]. However, control input chattering is
the main disadvantage of the aforementioned control strategies
which may result in undesirable high frequency dynamics.
Finally, adaptive neural network [17], [18], learning [19]–[21]
and fuzzy control [22], [23] approaches have been proposed in
literature for the motion control of underwater robotic vehicles.
The aforementioned control strategies exploit the universal
approximation capabilities of neural network and fuzzy system
structures, but unfortunately, yield inevitably reduced levels of
robustness against modeling imperfections [24].

In addition, by employing all of the aforementioned motion
control strategies, it is not always feasible or straightforward to
incorporate input (generalized body forces/torques or thrust)
and state (3D obstacles, velocities) constraints into the ve-
hicle’s closed-loop motion. In that sense, the motion control
problem of underwater robots continues to pose considerable
challenges to system designers, especially in view of the high-
demanding missions envisioned by the marine industry.

In this context, Nonlinear Model Predictive Control
(NMPC) [25], can be considered an ideal approach for com-
plex underwater missions, as it is able to combine motion
planning, obstacle avoidance, while handling efficiently input
and state constraints. A sampling based Model Predictive
Control scheme was proposed in [26] for motion control of
underwater vehicles in presence of constraints. In [27], an
MPC scheme was proposed in order to design an energy
efficient path for a glider, by minimizing a cost function based
on the consumed energy. However, only the kinematic model
of the vehicle was considered, without taking into account any
disturbances or noise of the ocean current profile. Interesting
results including estimated ocean wave profiles into an NMPC
scheme, with an emphasis on real-time execution, were pre-
sented in [28]. However, the effect of noise and disturbance
were not theoretically considered, but instead were presented
through simulation testing. In the aforementioned studies,
the validation of the proposed strategies was conducted via
simulation tests. An experimental validation of a visually
aided NMPC scheme for an underwater robotic system was
presented in [29], by considering the kinematic equation of
motion.

In this work, a robust NMPC scheme for underwater robotic
vehicles is presented. The purpose of the controller is to guide
the vehicle towards specific way points inside a constrained
workspace including obstacles. Various constraints such as:
sparse obstacles, workspace boundaries, control input satu-

ration as well as predefined upper bounds of the vehicle
velocity (requirements for several underwater tasks such as
seabed inspection scenario, mosaicking etc.) are considered
during the control design. The proposed scheme incorporates
the full dynamics of the vehicle in which the ocean currents
are also involved. The controller is designed in order to
find optimal thrusts (i.e., minimum forces generated by the
thrusters) required for minimizing the way point tracking
error. Moreover, the control inputs calculated by the proposed
approach are formulated in a way that the vehicle will exploit
the ocean currents, when these are in favor of the way-point
tracking mission, resulting in reduced energy consumption
by the thrusters. The closed-loop system has analytically
guaranteed stability and convergence properties. Finally, the
performance of the proposed control strategy is experimentally
verified using a 4 DoF underwater robotic vehicle operating
inside a constrained test tank with obstacles. To the best of the
authors knowledge and compared to the existing works in the
literature, this is the first time where a NMPC scheme which
incorporates the full dynamics of the vehicle is experimentally
verified in a constrained workspace including sparse obstacles.
Moreover, the proposed control strategy is more complete with
respect to existing works, since it incorporates input (i.e.,
thrust) and state (e.g., 3D obstacles, velocities) constraints into
the vehicle’s closed-loop motion and combines simultaneously
real–time motion planing and control of the underwater robotic
vehicle while considers at the same time energy consumptions
issues.

The rest of the paper is organized as follows: In Section-
II, the modeling of the underwater vehicle along with the
verbal description of the problem statement are presented. An
analytical description of the proposed method including: i)
the mathematical formulation of the problem, ii) the proposed
control strategy and iii) the robust stability analysis are pre-
sented in Section-III. The efficiency of the proposed approach
is illustrated in Section-IV via a set of experimental results.
Finally, Section-V concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Notation

In this work, the vectors are denoted with lower bold letters
whereas the matrices by capital bold letters. Given two sets A
and B ⊂ Rn, the Minkowski addition set C of two sets A and
B is defined as: C = A⊕B = {a+ b : a ∈ A, b ∈ B}. The
Pontryagin difference set P of two sets A and B is defined
as P = A ∼ B = {ζ ∈ Rn : ζ + ξ ∈ A,∀ξ ∈ B}. We define
as B(c, r) = {x ∈ R3 : ‖x− c‖ ≤ r} the closed sphere with
radius r and center c. For a given set A ⊂ Rn we define as
cl(A), int(A) and ∂S = cl(A)\int(A) its closure, interior and
boundary, respectively. Thus, we have A = int(A) ∪ ∂A.

B. Mathematical Modeling

Let us define a common body-fixed frame V attached to the
vehicle center of gravity, as well as the inertial frame I as
shown in Fig-1. The pose vector of the vehicle with respect to
(w.r.t) the inertial frame I is denoted by η =

[
ηT1 ηT2

]T ∈ R6

including the position (i.e., η1 = [x y z]
T ) and orientation
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Fig. 1: The inertial frame (I) and body-frame (V) are indicated in
red and green color respectively. The under-actuated DoFs are also
depicted in blue color.

(i.e., η2 = [φ θ ψ]
T ) vectors. The v =

[
vT1 vT2

]T ∈ R6 is the
velocity vector of the vehicle expressed in fixed-body frame V
and includes the linear (i.e., v1 = [u v w]

T ) and angular (i.e.,
v2 = [p q r]

T ) velocity vectors. In this work, we consider that
the vehicle operates under the influence of bounded irrotational
ocean currents w.r.t the inertial frame I. An estimation of
the ocean currents can be achieved by employing the data
obtained from Naval Coastal Ocean Model (NCOM) [30] and
Regional Ocean Model Systems (ROMS) [31]. However, an
estimation of the ocean current could be achieved locally using
an appropriate estimator [32], [33]. Thus, in the following
analysis, we consider the effect of ocean currents during the
control design, but we assume that these data are inaccurate
and the uncertainties on the ocean current’s profile should
be handled during the robustness analysis. In this work, the
bounded irrotational ocean current velocities w.r.t the inertial
frame I is denoted by vIc = [(vIc1)T ,01×3]T ∈ R6 with
vIc1 = [uIc , v

I
c , w

I
c ]T to be the vector of linear velocity terms.

Therefore, we can define the vehicle velocity vector relative
to the water expressed in body frame V as:

vr = v − vc (1)

Notice that the vector vc = [uc, vc, wc,01×3]T indicates the
expression of the ocean currents with respect to the body
frame V . Without loss of generality, according to the standard
underwater vehicles’ modeling properties [34], assuming that
the current velocity is slowly varying with respect to the
inertial frame (e.g, ∂vIc

∂t u 0), the dynamic equations of the
vehicle can be given as [34, eq:3.112-3.116]:

η̇ = J (η)vr + vIc (2a)
Mv̇r+C (vr)vr+D(vr)vr+g (η) = τV (2b)

where τV = [X, Y, Z, K, M, N ]
T ∈ R6 is the total

propulsion force/torque generated by the thrusters, M ∈ R6×6

is the inertia matrix, C (vr) ∈ R6×6 represents coriolis and
centrifugal terms, D (vr) ∈ R6×6 models dissipative effects,
g (η) ∈ R6 encapsulates the gravity and buoyancy effects, and
J (η) is the Jacobian matrix transforming the velocities from
the body-fixed (V) to the inertial (I) frame. Notice that the
transformation from ocean current velocity defined in the iner-
tial frame I (i.e., vIc ) into body-fixed one (i.e., vc) is achieved

using the transposed rotation matrix i.e., vc = JT (η)vIc (See
[34]). In (2), the total propulsion force/torque vector (τV ) is
computed using the thruster allocator matrix. Thus, for the
vehicle used in this work (i.e., 4 DoF Seabotix LBV150),
equipped with 4 thrusters (i.e., Port (po), Starboard (s), Vertical
(ve), Lateral (l)), which are effective in Surge (X), Sway (Y ),
Heave (Z) and Yaw (N ), we can define a new thrust vector
(τ = [τpo , τs, τve , τl]

T ∈ R4) and the appropriate thruster
allocator matrix (TA ∈ R4×4) such as:

τVLBV = TAτ , (3)

where τVLBV [X, Y, Z, N ]
T ∈ R4.

Remark 1: The vehicle used in this work is designed with
meta-centric restoring forces in order to regulate roll and pitch
angles. Thus, the angles φ, θ and angular velocities p and
q are negligible and we can consider them to be equal to
zero. Thus, from now on, we denote η = [x, y, z, ψ]> and
v = [u, v, w, r]>. The vehicle is symmetric about x - z and y
- z planes. Therefore, we can safely assume that motions in
heave, roll and pitch are decoupled [34].

C. Problem Formulation
Herein, we address the problem under consideration:
Problem 1: Given an underwater vehicle with dynamics as

described in (2), design a robust feedback control law for the
autonomous guidance towards a set of way-points ηdi , i =
{1, . . . , n}, while guaranteeing the following specifications:
• Avoid the workspace boundaries and a limited set of

obstacles within.
• Respect operational limitations in the form of state (e.g

velocity bounds) and input (thrust saturation) constraints.
• The energy consumed by thrusters to be retained in a

reduced level.

III. METHODOLOGY
Herein, we present the methodologies proposed in order to

formulate the solution of Problem 1.

A. Geometry of Workspace
Consider an underwater vehicle which operates inside the

workspace W ⊂ R3 with boundaries ∂W = {p ∈ R3 :
p ∈ cl(W)\int(W)} and sparse obstacles located within.
Without loss of generality, the robot and the obstacles can
be modeled as spheres (i.e., we adopt the spherical world
representation [35]). In this spirit, let B(η1, r̄) to be a closed
sphere that completely surrounds the vehicle volume (main
body and additional equipments). Moreover, the M static
obstacles within the workspace are defined as closed spheres
described by πm = B(pπm

, rπm
), m ∈ {1, . . . ,M}, where

pπm ∈ R3 is the center and the rπm > 0 the radius of the
obstacle πm. Additionally, based on the property of spherical
world [35], it holds that the obstacles m,m′ ∈ {1, . . . ,M}
are disjoint in such a way that the entire volume of the vehicle
can pass through the free space between them. Therefore, there
exists a feasible trajectory η(t) for the vehicle that connects
the initial configuration η(t0) with ηd such as:

B(η1(t), r̄) ∩ {B(pπm
, rπm

) ∪ ∂W} = ∅, m ∈ {1, . . . ,M}



B. Dynamical system

The dynamic equation (2) for the vehicle under considera-
tion, can be written in discrete-time form as:

xk+1 =f(xk, τk)⇒ xk+1 =xk+A(xk)dt+ C(τk)dt (4)

where:

A(xk)=



urk cos(ψk)− vrk sin(ψk) + uIc
urk sin(ψk) + vrk cos(ψk) + vIc

wrk + wIc
rrk

1
m11

(m22vrkrrk +Xuurk +Xu|u||urk |urk )
1

m22
(−m11urkrrk + Yvvrk + Yv|v||vrk |vrk )

1
m33

(Zwwrk −m22urkvrk + Zw|w||wrk |wrk )
1

m44
((m11−m22)urkvrk+Nrrrk +Nr|r||rrk |rrk )


,

C(τk) =

[
04×1

TAτk

]
with xk = [ηTk ,v

T
rk

]T = [xk, yk, zk, ψk, urk , vrk , wrk ,
rrk ]> ∈ R8 denotes the state vector at the time-step k
which includes the position and orientation of the vehicle
with respect to the inertial frame I and the relative linear
and angular velocity of the vehicle with respect to the water.
In addition, mii, i = 1, . . . , 4 are the mass terms including
added mass, Xu, Yv, Zw, Nr < 0 are the linear drag terms,
Xu|u|, Yv|v|, Zw|w|, Nr|r| < 0 are the quadratic drag terms,
while dt denotes the sampling period. The control input of
the system is τk = [τpk , τsk , τvk , τlk ]T ∈ R4 consisting
of the thrusters’ forces. As mentioned previously, the ocean
current profile induced to the dynamic model is inaccurate and
consequently a difference between the real value of the current
and the estimated one must be considered. The effect of these
uncertainties can be considered as disturbances on the system
(4). Thus, by δk = [01×4, δuk

, δvk , δwk
, δrk ]> ∈ D ⊂ R8

we present the effect of ocean current profile uncertainties
on the system at the time step k, with D to be a compact
set. Moreover, D is bounded by ||δk|| ≤ δ̄. Furthermore,
it is assumed that vehicle’s dynamic parameters have been
identified via a proper identification scheme. However some
degree of uncertainty on dynamic parameters denoted by
∆f(xk, τk) should be considered. Taking into consideration
the aforementioned disturbances, we are now ready to model
the perturbed system as follows:

xk+1 = f̃(xk, τk) + δk = f(xk, τk) + ∆f(xk, τk) + δk

= f(xk, τk) + γk + δk (5)

with:

γk = ∆f(xk, τk) ∈ Γ, ||γk|| ≤ γ̄ ∀xk ∈ X, τk ∈ T

where Γ is the compact set of uncertainties and γ̄ ≥ 0 is
a positive upper bound for this set. The equation (5) can be
rewritten as:

xk+1 = f(xk, τk) +wk (6)

with wk = γk + δk ∈ W ⊂ R8 as the result of adding
uncertainties and external disturbances of the system. W is
a compact set such that W = D ⊕ Γ. Since the sets D
and Γ are compact, W is also a compact set, bounded by
||wk|| ≤ w̄ with w̄ , γ̄ + δ̄. Notice that Eq. (6) is the

actual dynamical equation of the system, since it contains the
vector of disturbance effecting on the system. In this way, we
consider Eq.(4) as the nominal model of the system, in which
no disturbances are considered.

Property 1: The nominal model f(x, τ ) in eq.(4) is locally
Lipschitz in X i.e., there is a positive constant Lf <∞, such
that for every τ ∈T , ‖f(x1, τ )−f(x2,τ )‖≤Lf‖x1 − x2‖.

C. Constraints

1) State Constraints: We consider that the robot must avoid
the obstacles and the workspace boundaries. Moreover, for
the needs of several common underwater tasks (e.g., seabed
inspection, mosaicking), the vehicle is required to move with
relatively low speeds with upper bound denoted by the velocity
vector vp = [up vp wp rp]

>. These requirements are captured
by the state constraint set X of the system, given by:

xk ∈ X ⊂ R8 (7)

which is formed by the following constraints:

up + vp − |ur + vr| ≥ 0 (8a)
wp − |wr| ≥ 0 (8b)
rp − |rr| ≥ 0 (8c)

B(η1(t), r̄) ∩ {B(pπm
, rπm

) ∪ ∂W} = ∅, (8d)
m ∈ {1, . . . ,M}

2) Input Constraints: The actuation body forces and
torques are generated by the thrusters. Thus, we define the
control constraint set T as follows:

τk = [τpok
, τsk , τvek

, τlk ]T ∈ T ⊆ R4 (9)

These constraints are of the form |τpok
| ≤ τ̄po , |τsk | ≤ τ̄s,

|τvek
| ≤ τ̄ve and |τlk | ≤ τ̄l, therefore we get ‖|τk|| ≤ T̄ where

T̄ = (τ̄2po + τ̄2s + τ̄2ve + τ̄2l )
1
2 and τ̄po , τ̄s, τ̄ve , τ̄l ∈ R≥0.

D. Control Design

The control objective is to guide the actual system (6) to
a desired compact set around the way points i = {1, . . . , n}
that includes the desired state ixd , [(iηd)T , (ivdr )T ]T =
[ixd,

i yd,
i zd,

i ψd,
i ud,

i vd,
i wd,

i rd]
T ∈ X , while respecting

the state constraints (8a)-(8d) as well as the input constraints
(9). A predictive controller is employed in order to achieve
this task. In particular, at a given time instant k, the NMPC
is assigned to solve an Optimal Control Problem (OCP)
with respect to a control sequence τf (k) , [τ (k|k), τ (k +
1|k), . . . , τ (k + N − 1|k)], for a prediction horizon N . The
OCP of the NMPC is given as follows:

min
τf (k)

JN (xk, τf (k)) = (10a)

min
τf (k)

N−1∑
j=0

F (x̂(k + j|k), τ (k + j|k)) + E(x̂(k +N |k))

subject to:
x̂(k + j|k) ∈ Xj , ∀j = 1, . . . , N − 1, (10b)
τ (k + j|k) ∈ T, ∀j = 0, . . . , N − 1, (10c)
x̂(k +N |k) ∈ Ef (10d)



where Ef is the terminal set and F and E are the running
and terminal cost functions, respectively. At time instant k,
the solution of the OCP (10a)-(10d) is providing an optimal
control sequence, denoted as:

τ ∗f (k) = [τ (k|k), τ (k + 1|k), . . . , τ (k +N − 1|k)] (11)

where the first control vector (i.e., τ (k|k)) is applied to the
system. At the next time-step k+ 1, a new state measurement
is received and the whole procedure is repeated again. The
disturbance term wk can cause discrepancies between the
predicted state given from the nominal model (4) subject to
a specific sequence of inputs and the actual state, given from
(6) for the same sequence of inputs. In order to account for
this mismatch we use the double subscript notation for the
predicted state of system (4) inside the OCP of the NMPC:

x̂(k + j|k) = f(x̂(k + j − 1|k), τ (k + j − 1|k)) (12)

where the vector x̂(k+ j|k) denotes the predicted state of the
nominal system (4) at sampling time k + j with j ∈ Z≥0.
The predicted state is based on the measurement of the state
xk of the actual system at sampling time k (i.e., provided by
the on–board navigation system), while applying a sequence
of control inputs [τ (k|k), τ (k + 1|k), . . . , τ (k + j − 1|k)].
It holds that x̂(k|k) ≡ xk. The cost function F (·), as well
as the terminal cost E(·), are both of quadratic form, i.e.,
F (x̂, τ ) = x̂>Qx̂+τ>Rτ and E(x̂) = x̂>P x̂, respectively,
with P , Q and R being positive definite matrices. Particularly
we define Q = diag {q1, . . . , q8}, R = diag {r1, . . . , r4}
and P = diag {p1, . . . , p8}. Obviously for the running cost
function F , we have F (0, 0) = 0.

Notice, here that the OCP is solved for the nominal sys-
tem, i.e., the model of the system that is not affected by
disturbances. This is because OCP is solved for a prediction
horizon, thus, it is not possible to address the disturbances
beforehand. However, we distinguish the nominal system that
will be denoted as x̂(·) with the actual system, i.e., the system
that is affected by disturbances that will be denoted as x(·).
Thus, it is shown that the difference between the real evolution
of the state, given by (6) and the predicted evolution of the
state, given by (4), is in fact, bounded:

Lemma 1 ( [36]): The difference between the actual state
xk+j at the time-step k+ j and the predicted state x̂(k+ j|k)
at the same time-step, under the same control sequence, is
upper bounded by:

||xk+j − x̂(k + j|k)|| ≤
j−1∑
i=0

Lif w̄ (13)

Notice that in (10b), the state constraint set X from (7), is
being replaced by a restricted constraint set Xj ⊆ X . This
state constraints’ tightening for the nominal system guarantees
that the evolution of the real system will be admissible for all
time. More specifically, using this technique, it can be guaran-
teed that the evolution of the state of the perturbed system (6),
when the control sequence developed from the NMPC Problem
of (10a)-(10d) is applied to it, will necessarily satisfy the
state constraint set X [37]. More specifically, given Lemma-1,
where a bound on the state prediction error is evaluated, we set

Xj = X ∼ Bj where Bj = {x ∈ R8 : ||x|| ≤
∑j−1
i=0 L

i
f w̄}.

Before proceeding to the necessary robust analysis of the
proposed NMPC strategy, we employ some standard stability
conditions that are used in MPC frameworks, as the following:

Assumption 1: For the nominal system (4), there is an
admissible positively invariant set E ⊂ X such that the
terminal region Ef ⊂ E , where E = {x ∈ X : ||x|| ≤ ε0}
and ε0 being a positive parameter.

Assumption 2: We assume that in the terminal set Ef , there
exists a local stabilizing controller τk = h(xk) ∈ T for all
x ∈ E , and that E satisfies E(f(xk, h(xk))) − E(xk) +
F (xk, h(xk)) ≤ 0 for all x ∈ E .

Assumption 3: The terminal cost function E is Lipschitz in
E , with Lipschitz constant LE = 2ε0σmax(P ) for all x ∈ E ,
where σmax(P ) denotes the largest singular value of P .

Assumption 4: Inside the set E we have E(x) = xTPx ≤
αε, where αε = max{p1, . . . , p8}ε20 > 0. Assuming that E =
{x ∈ X(N−1) : h(x) ∈ T} and taking a positive parameter
αεf such that αεf ∈ (0, αε), we assume that the terminal set
designed as Ef = {x ∈ R8 : E(x) ≤ αεf} is such that
∀x ∈ E , f(x, h(x)) ∈ Ef .

Lemma 2: The cost function F (x, τ ) is such that F (0,0) =
0 and F(||x||) ≤ F (x, τ ), ∀x ∈ X and ∀τ ∈ T where F is
a K∞ function. Furthermore, F (x, τ ) is Lipschitz continuous
with respect to x in X , with a Lipschitz constant LF ∈ R>0.
Notice that a K∞ function, as well as the Lipschitz constant
LF , can be found analytically, due to the quadratic form of
the cost function F (x, τ ).

Remark 2 (Thrust’s energy consumption): The OCP of the
proposed NMPC scheme (10a)-(10d) is designed in order to
find the optimal forces τ ∗f (·) (i.e., minimum forces owing
to the quadratic form of the cost function) generated by the
thrusters in order to minimize the state error. On the other
hand, in (2), we employed vehicle dynamic equations which
incorporate also the ocean currents dynamics. This intuitively
means that the OCP of the NMPC is aware of the currents
in the region where the vehicle operates, while seeks the
minimum forces generated by the thrusters in order to reduce
the distance of the robot with respect to the desired position.
Thus, owing to the existence of ocean currents profile in the
dynamic model (2), the proposed NMPC consequently exploits
the ocean current dynamics, if these are in favor of the way
point tracking mission. Hence, the proposed control scheme
calculates the optimal command inputs, in order to retain
the energy consumed by the thrusters in a reduced level, as
dictated by the requirements of the considered Problem-1.

Remark 3: The obstacles within the workspace may be
detected on–line by the vehicle’s on–board sensors (e.g., multi
beam imaging or side scan sonar). In such a case, it should
be assured that the predicted state of the NMPC is always
within the sensing region of the robot. This intuitively means
that the prediction state is always feasible even in the worst
case (i.e., maximum velocity of the robot under maximum sea
current). Thus, assuming that R̄ denotes the sensing range of
the system, the prediction horizon N should be set as follows:

N ≤ R̄

(|v̄1|+ |v̄c|)dt



where the |v̄1| is the norm of maximum linear velocity of the
vehicle and |v̄c| is the norm of the upper bound of the sea
current velocity.

E. Stability Analysis of the Proposed NMPC
Here, the stability analysis of the closed loop system under

the NMPC law provided by (10a)-(10d) is presented following
parts of the approach in [36], [38], [39]. The approach for
establishing stability consists of two parts: in the first part it is
shown that the initial feasibility implies feasibility afterwards
and based on this, it is then shown that the state converges to a
bounded set, due to the presence of the persistent disturbances.
We begin by denoting τ ∗f (k − 1) as the optimal solution that
results from (10a)-(10d) at a time-step k−1. We, also, denote
a feasible control sequence τ̃f (k + j|k) of the optimization
problem at time-step k, such as:

τ̃ (k + j|k) =

{
τ ∗(k + j|k − 1) for j = 0, . . . , N − 2

h(x̂(k +N − 1|k)) for j = N − 1
(14)

where h(x) is the local stabilizing controller defined in
Assumption 2. Moreover, from (10c) and Assumption 2 is clear
that τ̃ (k + j|k) ∈ T .

1) Feasibility analysis: First we are going to provide a
necessary definition: Let XMPC be the set containing all the
state vectors for which a feasible control sequence exists that
satisfies the constraints of the optimal control problem. In
particular, while having a slight violation of the notation we
can define the feasible set XMPC as follows:

Definition 1: XMPC = {x0 ∈ Rn|∃ a control sequence
τf ∈ T, x̂f (j) ∈ Xj ∀j ∈ {1, . . . , N} and x̂(N) ∈ Ef}.
At this point we want to find a bound w̄ for the uncertainties,
then the closed-loop system in XMPC is stable. That means
that if xk ∈ XMPC then xk+1 = f(xk, τ

∗
k ) + wk+1 ∈

XMPC , for all wk+1 ∈ W . In order to derive feasibility
it must be guaranteed that x̂(k + N |k) ∈ Ef . This results to
a permitted upper bound of disturbances w̄ under which the
system is proven to be feasible. See Appendix-I for the Proof.

2) Convergence analysis: In order to treat the convergence
property, it should be guaranteed that the state of the perturbed
system reaches to a desired terminal set. A proper value
function must be shown to be decreasing in order to prove
stability of the closed loop system and consequently the
state convergence of the system. Consider the optimal cost
J∗N (k − 1) = J∗(xk−1, τ

∗
f (k − 1)) from (10a), at the time-

step (k − 1) as a Lyapunov function candidate. Consider,
also, the cost of the feasible sequence at time-step k as
J̃N (k) = J̃(xk, τ̃f (k)) evaluated from the control sequence
τ̃f (k+ i|k). After some mathematical manipulations, it can be
hold for the difference J̃N (k)−J∗N (k−1) that (See Appendix-
II for the Proof):

∆J = J̃N (k)− J∗N (k − 1) ≤

(
LF

i=N−2∑
i=0

Li
f + LEL

N−1
f

)
w̄

− F (x̂(k − 1|k − 1), τ ∗(k − 1|k − 1))

≤

(
LF

i=N−2∑
i=0

Li
f + LEL

N−1
f

)
w̄ − F(||xk−1||)

From the optimality of the solution, we derive the following:

∆J∗ = J∗N (k)− J∗N (k − 1) ≤ ∆J (15)

Therefore, the optimal cost J∗N (k) is an ISS-Lyapunov func-
tion of the closed loop system, and hence, the closed-loop
system is input-to-state stable.

IV. EXPERIMENTAL RESULTS

This section demonstrates the efficacy of the proposed
motion control scheme via a set of real-time experiments
employing a small underwater robotic vehicle.

A. Experimental Setup

The experiments were carried out inside the NTUA, Control
Systems Lab test tank, with dimensions 5m×3m×1.5m (Fig.
2). The bottom of the tank is covered by a custom-made poster
with various visual features and markers. Two cylindrical
objects with known position and dimensions are placed inside
the tank and considered as static obstacles. The calculation of

Fig. 2: Experimental setup: The 4 DoFs Seabotix LBV inside of the
NTUA, Control Systems Lab test tank including obstacles.

thrust allocator matrix TA of eq. (3) for the vehicle used in
this work, can be found in [40]. The vehicle is equipped with
a down-looking Sony PlayStation Eye camera, with 640×480
pixels at 30 frames per second (fps) enclosed in a waterproof
housing. The vehicle is also equipped with an SBG IG−500A
AHRS, delivering temperature-compensated 3D acceleration,
angular velocity and orientation measurements at 100Hz. The
marker localization system is based on the ArUco library [41].

The complete state vector of the vehicle (3D position, ori-
entation, velocity) as well as the vehicle’s dynamic parameters
in the following experimental studies are available via the
sensor fusion and state estimation module based on the Com-
plementary Filter notion and a proper identification scheme
presented in our previous results [40]. The identified dynamic
parameters of the vehicle are given in Table-I. The software
implementation of the proposed motion control scheme was
conducted in C++ and Python under the Robot Operating
System (ROS) [42]. Moreover, the Nonlinear Model Predictive
Controller employed in this work is designed using the NLopt
Optimization library [43].

The disturbances in the form of water currents, were induced
using a BTD150 thruster properly mounted inside the water



TABLE I: Vehicle identified dynamic parameter set

m11 m22 m33 m44

9.7532 8.6636 10.898 0.1589

Xu Yv Zw Nr

−8.6040 −18.1106 −17.1828 −1.4146

X|u|u Y|v|v Z|w|w N|r|r
−17.8534 −1.0594 −3.6482 −10.3483

tank. The generated flow field (i.e., assumed ocean current
profile), was computed using a GPU-enabled Computational
fluid Dynamics (CFD) software [44]. The flow field distribu-
tion inside the water tank is depicted in Fig-3.

Fig. 3: Distribution of the flow field inside the experimental water
tank as computed by the CFD software presented in [44].

B. Results

In order to prove the efficiency of the proposed controller,
three experimental sessions are presented, namely Session A,
B and C. In all experiments the objective is to follow a set of
predefined way points, while simultaneously avoid two static
obstacles and respect the workspace (test tank) boundaries.
In Sessions A and B, we consider the dynamic model of
vehicle in which the ocean currents are incorporated, hence the
controller is aware about the presence of currents. In Session
C, the employed dynamic model of vehicle inside the OPC
of NMPC, is not aware of the water currents induced by the
thruster mounted inside the water tank. A comparative study is
then presented, describing the performance of the underwater
robot along with the consumed thrust, in both cases where the
currents are known and unknown. The location and geometry
of the obstacles are considered known. More specific, the
position of the obstacles w.r.t the Inertial Frame I in x − y
plane is given by: xobs1 =

[
−0.625 −0.625

]
, xobs2 =[

0.9375 0
]
. Moreover, their length is considered to reach

above the water surface in order to prevent the MPC algorithm
from calculating solutions that impose the vehicle to bypass
them over the top. The state constraints of the (8a)-(8d) which
must be satisfied during all the experiments are analytically
formulated as follows: i) The obstacles are cylinders (See
Fig.2) with radius rπi

= 0.16m, i = {1, 2} and are modeled

Fig. 4: Session A – 2 WP tracking scenario: Vehicle trajectory in
horizontal plane.

together with the workspace boundaries according to the
spherical world representations as consecutive spheres. ii) The
radius of the sphere B(η1, r̄) which covers all the vehicle vol-
ume (i.e., main body and additional equipment) is defined as
r̄ = 0.3m. However, for the clarity of presentation, we depict
it as a safe zone around the obstacles where the vehicle center
η1 (denoted by blue line, see Fig.4, Fig.9, Fig.14) should
not violated it. iii) The vertical position must be between
0 < z < 1.2 m. iv) The vehicle’s body velocity norm of (8a)
|ur + vr| (planar motion) must not exceed 0.5m/s. v) Heave
velocity must be retained between −0.25 < wr < 0.25 m/s
(i.e., 0.25 − |wr| ≥ 0). vi) Yaw velocity must be retained
between −1 < rr < 1 rad/s (i.e., 1 − |rr| ≥ 0). Moreover,

Fig. 5: Session A: Evolution of vehicle states.

each of the four thrusters must obey the following input
constraint: −12 < τi < 12N, i = {p, s, v, l}. The state
and input constraints in the following figures are depicted
in red dashed lines were applicable. At this point we should
mention that each mission is considered as successful only if
the vehicle performs the way point tracking three consecutive
times, hence repeatability is proved. In all times the vehicle is
under the influence of the water currents depicted in Fig 3.

1) Session A – Two Way Points Tracking: In this scenario
the vehicle must travel via two way points which are placed
at ηd1 =

[
−1.60m −0.35m 0.45m 0 rad

]
, ηd2 =



Fig. 6: Session A: Vehicle body velocity norm |ur+vr|.

[
1.75m 0m 0.30m π rad

]
respectively. The three

consecutive trajectories of the vehicle along the horizontal
plane are depicted in Fig. 4 for each of the two experiments.
It can be seen that the vehicle performs successfully the way
point tracking while safely avoids the obstacles and the test
tank boundaries. We observe that in some cases the vehicle
travel from one way point to the other following a different
trajectory. This can be explained by the fact that the NMPC
finds a different optimal solution at the specific time frame,
due to the unmodeled dynamics of the tether. The vertical and
angular motion of the vehicle are depicted in Fig. 5, where it
can be seen that the state constraints are always satisfied. The
vehicle is consider to reach each way point if it has entered a
terminal region (i.e., spherical region of 0.3m and a offset of
±0.15rad) around the way point. These regions are depicted
in circles in Fig. 4 and 5. In Fig. 6 the body velocity norm
in planar motion is depicted and the respective constraint is
satisfied. The same stands for the heave and yaw velocities,
as shown in Fig. 7. In Fig. 8 the vehicle’s thruster inputs are
shown. As it can be seen the input constraints are also satisfied.

Fig. 7: Session A: Vehicle heave and yaw velocities.

2) Session B – Three Way Points Tracking: This
scenario is similar to the previous one except that the
vehicle must travel along 3 way points which makes
the mission more challenging considering the narrow
workspace. The locations of the three way points are
given by: ηd1 =

[
−1.50m, 0.30m, 0.40m,−π2 rad

]
,

ηd2 = [0.45m,−1m, 0.25m, 0 rad], ηd3 =
[1.20m, 1m, 0.30m,−π rad]. Again for this scenario,

Fig. 8: Session A: Thruster Commands.

two experiments were carried out. The three consecutive
trajectories of the vehicle along the horizontal plane are
depicted in Fig. 9.

Fig. 9: Session B: Vehicle trajectory in horizontal plane.

Fig. 10: Session B: Evolution of vehicle states.

Although this scenario is more complicated, the vehicle
again carries it out successfully. In this mission, the vehicle
also follows different trajectories, for the same reasons ex-
plained in Session A. The vertical and angular motion are
depicted in Fig. 10, while in Fig. 11 the body velocity norm
in planar motion is shown. The heave and yaw velocities are
presented in Fig. 12, while in Fig. 13 the vehicle’s thruster



Fig. 11: Session B: Vehicle body velocity norm |ur + vr|.

inputs are shown. As it can be observed, the vehicle reached all
desired way points while simultaneously satisfied all respective
state and input constraints.

Fig. 12: Session B: Vehicle heave and yaw velocities.

Fig. 13: Session B: Thruster Commands

3) Session C – Comparative Experimental Results: In the
following experiment, the location of the three way points is
exactly the same as in Session B. However, the predictive
controller considers the dynamic model of the vehicle in which
the ocean currents are not incorporated. Hence, the employed
dynamic model inside the OCP of the NMPC is not aware of
the water currents induced by the thruster mounted inside the
water tank. More precisely, instead of Eq. (2), we employ the
simple dynamic model, as given in [34, eq:2.172-2.173]:

η̇ = J (η)v (16a)
Mv̇+C (v)v+D(v)v+g (η) = τV (16b)

The three consecutive trajectories of the vehicle along the
horizontal plane are depicted in Fig.14. It can be seen that the
vehicle follows different trajectories each time. In addition to
the reasons explained in Session A, the water currents act as
unmodeled and dynamic external disturbances.

Fig. 14: Session C – Comparative scenario: Vehicle trajectory in
horizontal plane.

Comparing Fig.14 with Fig. 9, and taking into account the
distribution of the flow field inside the water tank, as indicated
in Fig.3, it can be observed that in the first case (Fig. 9) the
robot has exploited the known water current dynamics during
its way point tracking mission. On the contrary, when the
water currents were not known to the system (Fig. 14), in
one of the three consecutive trajectories, the vehicle traveled
outside the area between the obstacles and close to the
water tank boundary, while moving between the first way
point to the second one. In Fig.15 the body velocity norm

Fig. 15: Session C – Comparative scenario: Vehicle body velocity
norm |ur + vr|

in planar motion is shown, where it can be observed that
the predefined velocity constraint has been violated at least
once. The vehicle’s thruster inputs are shown in Fig. 16.
A comparison between the thrust consumption in Sessions
B (known current profile) and C (unknown current profile)
is given in Tables II-III. It is shown that the consumed
thrust in Session B experiments is significant less relative to
Session C experiment. Notice that we present two different



experiments conducted for session B demonstrating in this
way the repeatability of the proposed framework. It is also
worth noticing that B.2 experiment was completed in only
128.5 sec while the Session C experiment lasted 161.8 sec.
We can also observe, that while B.1 experiment had almost
the same time duration with C (i.e., 160.1 sec), a significant
15% reduction on the thrust consumption occurred. Hence,
the proposed control scheme appears to be more efficient and
optimal in terms of thrust consumption. According to Table

Fig. 16: Session C – Comparative scenario: Thruster Commands.

III, no significant difference in thrust consumption appears in
the vertical direction. This is explained by the fact, that (for
the sake of simplicity) we considered a 2D (i.e., in horizontal
plane) distribution of the flow field inside the water tank and
accordingly was computed the flow by the CFD software [44].
However, it is expected that more convincing results can be
achieved if a more realistic model of the water current (i.e., 3D
space) is employed within the dynamic model of the proposed
predictive controller.

TABLE II: Thrust consumption comparison

Thruster Thrust absolute value (N)

B.1 Exp B.2 Exp C Exp

Port 1161.5 946.7 1329.5

Starboard 954.0 846.4 1328.7

Lateral 1957.0 1942.5 2249.2

Vertical 940.3 925.5 1001.8

Total 5012.8 4661.1 5909.2

Total Reduction w.r.t C Exp -15% -21%

TABLE III: Exploitation per thruster

Thruster Thrust Reduction w.r.t to Session
C Experiment

B.1 Exp B.2 Exp

Port -12.6% -28.8%

Starboard -28.2% -36.3%

Lateral -12.9% -13.6%

Vertical -6.1% -7.6%

VIDEO

A video demonstrating the aforementioned experimental
results of the proposed methodology can be found at the
following url: https://youtu.be/z04ELMfCTYk

V. CONCLUSION

This work presents a NMPC strategy for underwater robotic
vehicles operating in a constrained workspace including obsta-
cles. The purpose of this control scheme is to guide the vehicle
towards specific way points. Various constraints such as: obsta-
cles, workspace boundaries, thruster saturation and predefined
upper bound of the vehicle velocity are considered during the
control design. Moreover, the proposed control scheme incor-
porates the dynamics of the vehicle and is designed in order
to find optimal thrusts required for minimizing the way point
tracking error. The control inputs calculated by the proposed
scheme, may exploit the ocean currents when these are in favor
of the way point tracking mission, which results in retaining
the energy consumed by the thrusters in a reduced level. The
efficacy of the proposed controller is experimentally verified
using a 4 DoF underwater robotic vehicle inside a constrained
test tank with sparse static obstacles. Future research efforts
will be devoted towards extending the proposed methodology
for multiple underwater robotic vehicles.

VI. APPENDICES

APPENDIX I

In order to prove this, first it will be shown that:

||x̂(k|k)− x̂(k|k − 1)|| = wk ≤ w̄
||x̂(k + 1|k)− x̂(k + 1|k − 1)|| =
= ||f(x̂(k|k))− f(x̂(k|k − 1))||
≤ Lf (||x̂(k|k)− x̂(k|k − 1)||) ≤ Lf · w̄

...

||x̂(k +N − 1|k)− x̂(k +N − 1|k − 1)|| ≤ LN−1
f · w̄

From Assumption 3 we have:

E(x̂(k +N − 1|k))− E(x̂(k +N − 1|k − 1)) ≤
≤ LE ||x̂(k +N − 1|k)− x̂(k +N − 1|k − 1)|| ≤LE ·LN−1

f ·w̄

For the nominal system and based on the optimal solution
τ ∗(k+j|k−1) we have: x̂(k+N−1|k−1) ∈ Ef . Therefore,
taking into account Assumption 4:

E(x̂(k +N − 1|k)) ≤ αεf + LE · LN−1f · w̄

We want x̂(k + N − 1|k) to belong to the set E , thus from
Assumption 4 it must satisfy E(x̂(k+N −1|k)) ≤ αε, which
leads to:

E(x̂(k +N − 1|k)) ≤ αεf + LE · CN−1f · w̄ ≤ αε

Therefore, if the uncertainties of the system are bounded by
w̄ ≤ αε−αεf

LE ·LN−1
f

then x̂(k+N − 1|k) belongs to the set E , and

from Assumption 4 we get x̂(k +N |k) ∈ Ef .



APPENDIX II

The difference between the optimal cost and the feasible
cost is:

∆J = J̃N (k)− J∗N (k − 1) =

=

i=N−1∑
i=0

F (x̃(k + i|k), τ̃ (k + i|k)) + E(x̃(k +N |k))

−
i=N−1∑

i=0

F (x̂(k + i− 1|k − 1), τ ∗(k + i− 1|k − 1))

− E(x̂(k +N − 1|k − 1)) =

i=N−2∑
i=0

F (x̃(k + i|k), τ̃ (k + i|k))

− F (x̂(k + i|k − 1), τ ∗(k + i|k − 1))

+ F (x̃(k +N − 1|k), τ̃ (k +N − 1|k))

− F (x̂(k − 1|k − 1), τ ∗(k − 1|k − 1))

+ E(x̃(k +N |k))− E(x̂(k +N − 1|k − 1))

where τ̃ (k+N −1|k) = h(x̂(k+N −1|k)) taken from (14)
and τ̃ (k+ i|k) = τ ∗(k+ i|k− 1) for i = 0, . . . , N − 2. Also
from Lemma 2 combined with Lemma 1 we get:

i=N−2∑
i=0

F (x̃(k + i|k), τ̃ (k + i|k))

− F (x̂(k + i|k − 1), τ ∗(k + i|k − 1))

≤ LF ·
i=N−2∑

i=0

Li
f · w̄

From Assumption 3 it yields:

E(x̃(k +N |k))− E(x̂(k +N − 1|k − 1))

= E(x̃(k +N |k))− E(x̃(k +N − 1|k))

+ E(x̃(k +N − 1|k))− E(x̂(k +N − 1|k − 1))

≤ E(x̃(k +N |k))− E(x̃(k +N − 1|k)) + LEL
N−1
f w̄

We used the instantaneous difference of the predictive state
x̂(k+N − 1|k) and the feasible state x̃(k+N − 1|k− 1) at
the time-step k +N − 1 such that:

||x̃(k +N − 1|k − 1)− x̂(k +N − 1|k)|| ≤ LN−1f w̄

Therefore, we obtain:

∆J ≤

(
LF

i=N−2∑
i=0

Li
f + LEL

N−1
f

)
w̄+

+

[
F (x̃(k +N − 1|k), h(x̂(k +N − 1|k)))

+ E(x̃(k +N |k))− E(x̃(k +N − 1|k))

]
− F (x̂(k − 1|k − 1), τ ∗(k − 1|k − 1))

Finally, taking into account the Assumption 2 and Lemma2:

∆J ≤

(
LF

i=N−2∑
i=0

Li
f + LEL

N−1
f

)
w̄−

− F (x̂(k − 1|k − 1), τ ∗(k − 1|k − 1))

≤

(
LF

i=N−2∑
i=0

Li
f + LEL

N−1
f

)
w̄ − F(||xk−1||)
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