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Abstract— This paper presents a novel, data-driven motion
planning strategy for autonomous mobile robots navigating in
dynamic environments with human interactivity. The proposed
approach utilizes a receding-horizon optimization framework
that integrates predictive models of the robot motion with
unknown-form safety constraints encapsulating human move-
ment uncertainties, and complex dynamics of human-human
and human-robot interactions. The functional form of con-
straints is unknown instead, we obtain only measurements and
gradients of the constraint i.e. 1st order online optimization.
Specifically, data-driven log barrier functions enforce safety
constraints by penalizing closeness to constraint boundaries.
The proposed strategy enables reliable, efficient, and safe robot
navigation in high-density environments, making it particularly
suitable for applications in pedestrian and other interactive
spaces. Finally, realistic simulation studies validate the effec-
tiveness of the proposed framework in balancing safety with
operational efficiency.

I. INTRODUCTION

The deployment of mobile robots in various fields has
expanded significantly in recent years, with applications
spanning from multi-robot logistics and service tasks to
healthcare and urban mobility [1], [2]. However, integrat-
ing autonomous mobile robots into crowded pedestrian ar-
eas poses unique challenges, especially regarding safe and
smooth operation in dynamic environments [3]. A key obsta-
cle is robust and precise motion planning that proactively and
responsively accounts for human dynamics to ensure safety
and fluidity [4]. In crowded environments, uncertain human
intentions require robust trajectory estimation with explicit
uncertainty modeling integrated into planning algorithms to
ensure safety and reliability in such dynamic environments
[5]. Many navigation methods treat pedestrians as indepen-
dent agents, non-interactive entities, causing uncertainty to
escalate [6] and making robots susceptible to the Freezing
Robot Problem (FRP) [7] (Fig. 1). Additionally, implicit
pedestrian interactions involving frequent speed and direction
adjustments complicate motion dynamics, further increasing
FRP risk [8]. While several models attempt human predic-
tion [9], most neglect human-human interactions and lack
quantifiable safety guarantees [5]. In addition, a substantial
body of work addresses multi-agent navigation without re-
lying on predicted human trajectories. When prediction is
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Fig. 1: Illustration of the ‘freezing robot’ problem in dynamic
environments with human interaction. Effective navigation in shared
spaces relies on understanding intra-human dynamics and human-
robot interactions for safe path planning and collision avoidance.

used, two main approaches are identified [4]: (i) decou-
pled methods, which predict human motion independently
of planning (often leading to FRP) [6], and (ii) coupled
methods, which model interactions during joint trajectory
planning [10]. Coupled or interactive approaches can be
explicit, using structured models like geometry or game
theory [11], or implicit, relying on data-driven techniques
such as Inverse Reinforcement Learning [12] and Deep
Learning [13]. However, deep learning models, in addition
to lacking formal safety guarantees, often lack goal-directed
planning, which limits their use in safe navigation [5]. In
this work, a coupled and implicit motion planning strategy
is proposed for autonomous robot navigation in dynamic
environments involving human interaction, such as crowded
pedestrian areas, with formal safety guarantees. A surrogate
optimization problem is constructed using data samples that
include both the value and gradient of an unknown constraint
function. The cost function comprises a known term, the
Euclidean distance to a predefined goal, and a data-driven
log barrier function. We assume access to both the value
and the gradient of the unknown constraint function at any
given query point. Thus, our approach falls under the cate-
gory of first-order online optimization methods [14], which
have demonstrated efficient convergence properties for non-
smooth convex optimization problems [15]. An adaptive step
size ensures safety with respect to the unknown constraint
[16]. Despite the appeal of such data-driven optimization
methods, to the best of the authors’ knowledge, this is the
first application of such methods to systems with dynamics,
a hallmark of control problems. We address this gap by
combining first-order online optimization methods with a
receding horizon scheme and designing a projected gradient
descent method that enforces dynamical constraints at each
iteration at each iteration of the online optimization. More-
over, we prove recursive feasibility and cost convergence.



Simulation results demonstrate the method’s ability to handle
unpredictable crowd behavior, even without an explicit model
of the constraint function.

II. PROBLEM FORMULATION

Consider a mobile robot with linear dynamics:

ẋ(t) = Ax(t)+Bu(t), (1)

where x∈Rn is the state vector, u∈Rm the control input, and
matrices A∈Rn×n and B∈Rn×m define the system evolution.
The control objective is to find an optimal sequence of
inputs minimizing a cost function c : Rn ×Rm 7→ R, subject
to constraints h : Rn ×Rm 7→ Rn represented by inequalities
h(x,u)≤ 0. Practically, h(x,u) captures safety constraints in
environments with dynamic human agents acting as moving
obstacles. A key challenge is that the functional form of
h(x,u) is unknown; we only access instantaneous measure-
ments at specific states and controls. This approach reflects
the complexity inherent in human-human and human-robot
interactions, which are unpredictable and difficult to explic-
itly model. By utilizing data-driven measurements, such as
positions obtained from sensors like Lidar, the framework
dynamically adapts to these evolving interactions, ensuring
safety without explicit modeling of human movement pat-
terns. Discretizing dynamics (1) via Euler approximation
with step size ∆ leads to the following discrete-time optimal
control formulation:

min
uk

τ−1

∑
k=1

ck (xk,uk)+ cτ (xτ) (2a)

s.t. xk+1 = xk +∆(Axk +Buk) , (2b)
hk(xk,uk)≤ 0, (2c)

where τ is the terminal time, cτ(xτ) denotes the terminal cost,
and k is the discrete time step. We assume the costs ck(xk,uk)
and the unknown constraint hk(xk,uk) are twice differentiable
with respect to the decision variable uk. Additionally, we
assume the initial state x0 lies within the interior of the
feasible region defined by the constraint (2c).

III. RECEDING HORIZON CONTROL SCHEME

We propose solving the discrete-time optimal control prob-
lem (2) via a receding horizon control approach over a finite
horizon N. Define the state sequence starting from time step
k+1 as follows:

x̄ = [x(k+1 | k)T ,x(k+2 | k)T . . . ,x(k+N | k)T ]T .

Similarly, the approximately optimal control input uk is
chosen as the first element from the control sequence

ū = [u(k | k)T ,u(k+1 | k)T , . . . ,u(k+N −1 | k)T ]T ,

where ū represents the sequence of optimal decision variables
for the following optimization problem:

min
x̄,ū

V (x̄, ū) = min
ū

N−1
∑
j=1

c
(
xk+ j|k,uk+ j|k

)
+

cN
(
xk+N|k

)
(3a)

s.t. xk+ j|k = xk+ j−1|k +∆
(
Axk+ j−1|k +Buk+ j−1|k

)
,

∀ j = 1, . . . ,N −1, x(k|k) = x (3b)
hk+ j−1|k(xk+ j−1|k,uk+ j−1|k)≤ 0,

∀ j = 1, . . . ,N −1, (3c)
xk+N|k ∈ X f , uk ∈U. (3d)

Here, x0 represents the initial system configuration in (3),
corresponding to the state measurement at time step k. An
admissible control law refers to a state-feedback controller
satisfying constraints (3b) and (3c). Our objective is to
design a control policy that optimally drives the system to
a predefined terminal set X f , which, in robot navigation
scenarios, consists of goal states or waypoints.

Assumption III.1 ( [17]). The following standard assump-
tions are required,

1) The origin of the dynamical system (1) is the steady
state to be stabilized and lies within the set X f .

2) The stage cost function c(x,u) is positive, and is zero
only at c(0,0).

3) There is a local control law K(x) such that the terminal
set X f remains invariant, and the state and input con-
straints, x ∈ X f and K(x)∈U respectively are satisfied.

4) The terminal cost cN(x) acts as a Lyapunov function
within the set X f , fulfilling the inequality cN(x(k +
1))−cN(x(k))≤−c(x,K(x)) for every xk ∈ X f subject
to the local control law K(x).

5) The initial state x0 for (3) is feasible.

Since the functional form of h is unknown, directly solving
(3c) is infeasible. In practice, h represents a safety func-
tion capturing the complex dynamics of human-human and
human-robot interactions. In the next subsection, we address
how to handle constraint (3c).

A. Satisfying the unknown constraint

To solve the constrained optimization problem (3), we
transform it into an equivalent unconstrained problem by
enforcing the unknown constraints via a barrier function.
Specifically, the barrier function Bη(x̄, ū), estimated subse-
quently, is defined as:

Bη(x̄, ū) :=V (x̄, ū)+

η

N−1

∑
j=1

(− log(−hk+ j−1|k(xk+ j−1|k,uk+ j−1|k))), (4)

where η is a tuning parameter that shall be tuned adaptively
as we shall see later. The gradient of Bη(x̄, ū) is calculated



as follows (using the chain rule),

∇Bη(x̄, ū) := ∇V (x̄, ū)+

η

N−1

∑
j=1

∇hk+ j−1|k(xk+ j−1|k,uk+ j−1|k)

−hk+ j−1|k(xk+ j−1|k,uk+ j−1|k)
. (5)

Since the functional form of hk+ j−1|k(xk+ j−1|k,uk+ j−1|k) is
unknown, and we solely have access to data samples or
observations, it is necessary to estimate the barrier term
Bη(x̄, ū) and its gradient ∇Bη(x̄, ū) from the collected ob-
servations. To that end, we assume the local smoothness
of the Barrier function or more specifically, for any given
a,b ∈ Rn ×Rm,∥∥∇Bη(a)−∇Bη(b)

∥∥≤ M ∥a−b∥ . (6)

The paper [16] provides a method to compute the Lipschitz
constant M. Let Hk represent measurements of the unknown
constraint function h(xk,uk) at a given query point (xk,uk),
which vary throughout the horizon in (3) as states evolve
according to (3b). In practice, Hk corresponds to real-time
distance measurements obtained from onboard sensors (e.g.,
Lidar). Additionally, assuming the robot has an IMU for
measuring body velocity, and a vision system to detect
human velocities, we obtain the gradient ∇Hk(xk,uk) at
each time step k. Thus, at each time step k, we have the
observations:

Ok = [Hk(xk,uk),∇Hk(xk,uk)]. (7)

Let the estimated barrier function given the observations
Ok(Hk,∇Hk) be denoted as B̂η(x̄, ū). More specifically,

B̂η(x̄, ū) =V (x̄, ū)−η

N−1

∑
j=1

log(−Hk(xk+ j−1,uk+ j−1)). (8)

It should be noted that the term η is adaptively tuned on
the basis of each −Hk(xk,uk) and a simple adaptive rule
can be η = e−y2

where y = ∑
N−1
j=1 −Hk(xk+ j−1,uk+ j−1). This

adaptive rule ensures that for feasible iterates the value of
the log term is ≈ 0 since the value of η → 0 in (8) for
Hk(xk,uk)> 2.

Recall that in B̂η(x̄, ū), only the data-driven log barrier
is estimated from observations, while the cost V (x̄, ū) is
a known quadratic distance to the goal. We assume un-
biased measurements, i.e., hk(xk,uk) ≈ E[Hk(xk,uk)], where
the expectation is with respect to the measurement noise.
We further assume that the measurements Hk(xk,uk) have
a bounded variance σ2 [16]. Similar assumptions apply to
gradient measurements ∇Hk(xk,uk). Let G(Hk,∇Hk) denote
the gradient of the estimated barrier function i.e. ∇B̂η(x̄, ū).
Given Ok, G(Hk,∇Hk) is estimated as:

G(Hk,∇Hk) := ∇V (x̄, ū)+

η

N−1

∑
j=1

∇Hk+ j−1|k(xk+ j−1|k,uk+ j−1|k)

−Hk+ j−1|k(xk+ j−1|k,uk+ j−1|k)
, (9)

where ∇V (x̄, ū) is known, as it corresponds to the gradient
of the Euclidean distance between the robot and the goal.

Next, we address enforcing the dynamic constraint (3b) and
subsequently combine both constraints in a gradient descent
scheme.

B. Satisfying the known dynamics constraint

For simplicity, we compactly rewrite the constraint equa-
tions in (3b) as:

Â([0T,x(k+1 |k)T, . . . ,x(k+N−1 |k)T]T+[x(k |k)T,0T , . . . ,0T ]T)

+ B̃ū = [x(k+1 | k)T , . . . ,x(k+N | k)T ]T = x̄.

where matrices Â and B̃ are defined appropriately. More
concisely:

(ÂC̃− I)x̄+ B̃ū = Ãx̄+ B̃ū = ȳ (10)

where 0 ∈ Rn is the vector of zeros elements, and

ȳ =−Â[x(k | k)T ,0T , . . . ,0T ]T

C̃x̄ = [0T ,x(k+1 | k)T , . . . ,x(k+N −1 | k)T ]T

We define Aȳ as the set of state and input sequences
satisfying the dynamical constraint (10), explicitly given by:

Aȳ = {(x̄, ū) | Ãx̄+ B̃ū = ȳ}. (11)

The optimization problem (3) can now be equivalently ex-
pressed as the following data-driven formulation:

min
x̄,ū

B̂η(x̄, ū) (12a)

s.t. (x̄, ū) ∈ Aȳ. (12b)

The known dynamic constraints (12b) are enforced using
a projection operator projecting the outputs of the data-
driven log barrier onto the set of feasible inputs. Since the
considered dynamical system is linear, the set Aȳ is convex
in the decision variables z̄ := (x̄, ū). We define the projection
operator Π as:

ΠAȳ(z) = arg min
z′∈Aȳ

∥∥z′− z
∥∥ (13)

Due to the convexity of the set (11), the projection (13) has
a unique solution [18]. For brevity, we denote the decision
variable of problem (12) as z̄ = (x̄, ū).

C. Projected Gradient Descent scheme for (12)

We shall now focus on solving the optimization problem
given by (12). Let t = 1, . . . ,T denote the tth iterate of
the algorithm solving the optimization problem (12) as
shown in Fig.2. By using the projection operator (13), we
unconstrain the optimization problem (12). The variable z̄t+1
is then updated with an adaptive, safety-aware step size γt
as follows:

z̄t+1 = z̄t −ΠA0 γtG(Hk,∇Hk). (14)

We shall now design the adaptive safe step size following
the ideas of [16]. Let α

j
t := −hk+ j|k(xk+ j|k,u( j)t) represent

the unknown constraint, where u( j)t is the jth component of
z̄t corresponding to uk+ j|k. Let θ

j
t represent the inner product



Fig. 2: The figure illustrates the relation between the time scales t
and k.

between the gradient of the unknown constraint function and
the gradient step of the update equation (14),

θ
j

t =

〈
∇hk+ j−1|k(xk+ j−1|k,uk+ j−1|k),

G(Hk,∇Hk)

∥G(Hk,∇Hk)∥

〉
.

(15)
The adaptive safe step size γt is chosen as follows,

γt = min

 min
j=1,...,N−1

 α
j

t

2 | θ
j

t |+
√

α
j

t M

 1
∥G∥ ,

1
M

 , (16)

where G = G(Hk,∇Hk), α
j

t is the lower bound on α
j

t and
| θ

j
t | is the absolute value of θ

j
t . See paper [16] for the

derivation of the same. In essence, each update moves the
decision variable in the direction of G(Hk,∇Hk), decreasing
the barrier function B̂η(z̄) and thus enhancing safety. Since
B̂η(z̄) sharply increases near the boundary of constraint (3c),
moving toward decreasing B̂η(z̄) ensures constraint sat-
isfaction. However, overly large steps may bypass local
minima, inadvertently increasing B̂η(z̄). To prevent this,
the adaptive step size γt needs to be modified to be small
enough to correspond to the norm of the estimated gradient
G(Hk,∇Hk). Specifically, the control sequence is updated
using the adaptive step size γt defined in (16), which ensures
the step size remains bounded by the Lipschitz constant M.
This guarantees that each control update respects the safety
constraint h(x,u)< 0. We now state the main theorem:

Proposition 1. Consider the surrogate optimization problem
(12) that needs to be solved sequentially for optimal control
of system (2). The objective function B̂η(z̄) consists of costs
V (z̄) and the log-barrier η ∑

N−1
j=1 log(−Hk(xk+ j−1,uk+ j−1))

with respect to the measurements Hk,∇Hk. Furthermore, the
considered optimization problem is subject to the constraint
z̄ ∈ Aȳ. Then, the following statements are true:

• The control law z̄t+1 updated using the projected gradi-
ent descent scheme (14) solves the optimization problem
for each time instant k.

• The control input is feasible at each time instant k.
• The control sequence guarantees convergence of the

cost B̂η to its optimal value.

Proof. We prove the proposition in two parts: showing that
(1) projected gradient descent in the direction of B̂η(z̄)
ensures safety while maintaining feasibility of the dynamical
constraints, and (2) cost reduction and convergence of the
state trajectory to the goal.

Gradient descent based update:
The KKT conditions for optimization problem (12) are

∇B̂η(z̄)+ [ÃB̃]T ν
⋆ = 0, (17a)

Ãx̄+ B̃ū− ȳ = 0, (17b)
ν
⋆
j ≥ 0, ∀ j = 1, . . . ,N −1, (17c)

ν
⋆
j (Ãx̄+ B̃ū− ȳ) j = 0, (17d)

where ν⋆ the lagrange multiplier associated with the
dynamic constraint (17b). It should be noted that only the two
former KKT conditions i.e., (17a) and (17b) are relevant for
equality constraints considering the given problem of (12).
Now recall the definition of the set Aȳ

Aȳ = {(x̄, ū) | Ãx̄+ B̃ū = ȳ}.

In addition, we define specifically:

A0 = {(x̄, ū) | Ãx̄+ B̃ū = 0}. (18)

This definition enables us to express the problem in term of
projection onto A0, which is the set of all points satisfying
the dynamic constraint. The gradient descent scheme updates
the decision variable z̄ by moving in the direction of the
gradient G(Hk,∇Hk), while projecting onto the constraint
set A0 to maintain feasibility. Therefore, We consider the
following gradient descend scheme:

z̄t+1 = z̄t −ΠA0γtG(Hk,∇Hk) (19)

where ΠA0 is the projection operator onto Aȳ i.e. that keeps
the iterates within the feasible set A0, where it is assumed
that z̄0 ∈ Aȳ. For any equilibrium z̄∞ of the recursion (19)
(i.e., when the solution is no longer changing), we have

ΠA0G(Hk,∇Hk) = 0 (20)

and z̄∞ ∈ Aȳ (feasible) from induction over t. To perform
the projection, assume an orthonormal basis {b1, ..b(N−1)n}
for the row space of the constraint matrix [ÃB̃] =
[rT

1 , ..,r
T
(N−1)n]

T . This basis allows us to represent the pro-
jection of G(Hk,∇Hk) onto A0 as:

ΠA0G(Hk,∇Hk) = G(Hk,∇Hk)−
(N−1)n

∑
i=1

dibi (21)

where di are coefficients that capture the components of
G(Hk,∇Hk) in the direction of each basis vector bi. These
components are determined to ensure that the projected
gradient lies within the feasible space defined by A0. More
precisely, the coefficient di are determined to ensure:

[ÃB̃]ΠA0G(Hk,∇Hk) = 0. (22)

Since {b1, ..b(N−1)n} spans the row space of [ÃB̃], (22) is
equivalent to :

< b j,ΠA0G(Hk,∇Hk)> (23)

=< b j,G(Hk,∇Hk)>−
(N−1)n

∑
i=1

di < b j,bi > (24)

=< b j,G(Hk,∇Hk)>−d j = 0 ∀ j ∈ {1, ..,(N −1)n} (25)



yielding

d j =< b j,G(Hk,∇Hk)> (26)

where ⟨α,β ⟩ denotes the inner product of vectors α and
β . Again, since {b1, ..b(N−1)n} spans the row space of [ÃB̃]
we have bi = ∑

(N−1)n
j=1 ai, jr j, where {ai, j} are the coefficients

of the coordinate transform between {b1, ..b(N−1)n} and
{r1, ..,r(N−1)n}. With (20) and (21) we can then express the
gradient G(Hk,∇Hk) as linear combination of row vectors:

G(Hk,∇Hk)

=
(N−1)n

∑
i=1

di

(N−1)n

∑
j=1

ai, jr j =
(N−1)n

∑
j=1

(N−1)n

∑
i=1

diai, jr j =
(N−1)n

∑
j=1

ν
⋆
j r j

(27)

where ν⋆
j are identified as Lagrange multipliers. Thus, the

KKT conditions (17) apply to the equilibrium point. To
address the feasibility of the receding horizon approach,
we follow a method similar to that in [19], [20]. Ini-
tially, we consider the current state xk and the optimal
control sequence [u⋆(1),u⋆(2), . . . ,u⋆(N − 1)] obtained by
solving (12). At the next time step, with the updated state
xk+1, we extend this control sequence by appending the
terminal controller K(x⋆N). The resulting control sequence,
[u⋆(1),u⋆(2), . . . ,u⋆(N − 1),K(x⋆N)], remains feasible (albeit
generally sub-optimal) due to the assumption specified in
(III.1). Consequently, the optimization problem (12) retains
feasibility at each time step.
Convergence to the goal via cost reduction: Goal conver-
gence follows if the optimal value function J⋆(xk) := B̂η(z⋆)
can be shown to be a Lyapunov function satisfying:

J⋆(xk+1)− J⋆(xk)< 0, ∀x ̸= 0.

At the outset, recall that due to the properties of η , the opti-
mal J⋆(xk)≈V (z⋆) as the log barrier term will be negligible
owing to the feasibility of the optimal solution. Therefore,
for the optimal control sequence [u⋆(1),u⋆(2), . . . ,u⋆(N−1)]
calculated at xk, the optimal value function is the following
as per (3),

J⋆(xk) =
N−1

∑
k=1

ck(x⋆k ,u
⋆(k)))+ cN(x⋆N),

whereas for the feasible (but sub-optimal) control sequence
[u⋆(1),u⋆(2), . . . ,u⋆(N − 1),K(x⋆N) for xk+1, we have the
following sub-optimal value function,

J′(xk+1) =
N

∑
k=2

ck(x⋆k ,u
⋆(k)))+ cN(xN+1),

where xN+1 is obtained by applying K(x⋆N) at state x⋆N . Due
to the sub-optimality,

J⋆(xk+1)≤ J′(xk+1),

and we substitute J′(xk+1) with J⋆(xk) − c1(x⋆1,u
⋆(1)) +

c(x⋆N ,K(x⋆N)), where the last term is the cost due to the rest
of the trajectory after time N (or after the trajectory enters
the terminal set). Assumption III.1 includes the following

Fig. 3: Developed simulation environment in Webots involving a
Spot robot in a workspace with moving human agents.

inequality for the terminal set, cN(x(k + 1))− cN(x(k)) ≤
−c(x,K(x)) for every xk ∈ X f . Thus, we can neglect the last
term and conclude the following,

J⋆(xk+1)− J⋆(xk)<−c1(x⋆1,u
⋆(1)), ∀x ̸= 0.

■

IV. SIMULATION STUDIES

Real-time simulations were conducted to validate the
proposed approach using a Webots-based environment [21]
integrated with ROS. A Spot legged robot operated in
a constrained workspace containing static obstacles and
randomly moving human agents (see Fig. 3). The robot
followed a sequence of waypoints, with human movements
being unknown and non-predefined. Spot was modeled with
holonomic dynamics, ẋ(t) = u(t), and equipped with LiDAR
for detecting obstacles and humans. Human agents were ran-
domly placed with randomly assigned directions to simulate
natural behavior. This setup enabled dynamic navigation and
real-time adaptation to environmental changes. Simulation
results for the first waypoint (Fig. 4–5) highlight the system’s
dynamic response and performance. The robot smoothly
slows down to yield when its path overlaps with the human’s
trajectory and resumes once a safe distance is reached. A
video demonstrating various simulation scenarios is available
at: https://youtu.be/29TS0rNJo_s.

V. CONCLUSION

In this paper, we have introduced an online learning
framework for safe and efficient robot navigation in dynamic,
human-interactive environments. Our approach integrates
data-driven safety constraints of unknown functional forms
through log barrier functions with adaptive step sizing,
extending the first-order online optimization method to linear
dynamical systems via a receding horizon scheme. We uti-
lized projected gradient descent to enforce the constraints
associated with robot dynamics and established proof for
both recursive feasibility and cost convergence within the
context of receding horizon optimization. Simulation results
validate the effectiveness of our method, showing collision-
free and smooth goal-directed navigation. Future work will

https://youtu.be/29TS0rNJo_s


Fig. 4: The evolution of the system for waypoint 1.

be to extend our framework to nonlinear robot dynamics,
enhancing robustness against uncertainties, and performing
real-world experimental validations.
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