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Abstract— This paper introduces a safe force/position track-
ing control strategy designed for Free-Floating Mobile Manip-
ulator Systems (MMSs) engaging in compliant contact with
planar surfaces. The strategy uniquely integrates the Control
Barrier Function (CBF) to manage operational limitations and
safety concerns. It effectively addresses safety-critical aspects
in the kinematic as well as dynamic level, such as manipulator
joint limits, system velocity constraints, and inherent system
dynamic uncertainties. The proposed strategy remains robust
to the uncertainties of the MMS dynamic model, external
disturbances, or variations in the contact stiffness model.
The proposed control method has low computational demand
ensures easy implementation on onboard computing systems,
endorsing real-time operations. Simulation results verify the
strategy’s efficacy, reflecting enhanced system performance and
safety.

I. INTRODUCTION

In recent years, a growing number of robotic tasks, beyond
just mobility, necessitate autonomous robots cooperating as
a team [1] and being equipped with interaction capabilities.
This development positions them as suitable substitutes for
humans in various applications [2]. Mobile Manipulator
Systems (MMSs) [3] can be classified from various angles,
including the domain of application or their specific type [4].
A particularly complex category within MMSs is identified
as Floating Base Mobile Manipulator Systems (FBMMSs)
[5]. These systems feature a vehicle that is not anchored,
effectively putting the base of the manipulator in a ”flying
mode”. Such a configuration grants the system the liberty to
navigate through all axes of movement, independent of the
actuation of these movements. When using MMSs, certain
unique characteristics and constraints arise, some of which
are determined by the system’s operational domain. These
nuances often require a specific array of onboard sensors and
careful consideration of their specifications during control
design. Additionally, during the control design for these
systems, it’s essential to meet safety constraints like joint
limits and prevent system singularities, while also consider-
ing performance metrics such as system manipulability [6].
For many tasks involving MMs, especially those requiring
precision like object retrieval, human-robot interactions, or
specific tasks like welding, it’s essential for the system to
interact precisely with its environment. Such tasks often
call for adherence to preset performance standards, whether
it’s maintaining contact, as in welding, or preventing force
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Fig. 1. A graphical illustration of the MMS end-effector in compliant
contact with a planar surface.

overshoots, vital in delicate interactions, or sampling from
sensitive environments [7]. In applications like welding or
grinding, these systems are tasked with interacting with
restricted surfaces. Consequently, tracking the intended tra-
jectory and adhering to the desired force constraints have
emerged as complex issues in the research community [8].

While the literature on trajectory tracking control is ex-
tensive, studies on position/force tracking control of mobile
manipulators are notably sparse. Control over these ma-
nipulators’ desired position/force is often achieved through
adaptive or robust control strategies [9]. Various robust
and/or adaptive methodologies have been investigated to
counter uncertainties in motion and force control, while
considering specific challenges such as actuator dynamics,
or non-holonomic base features. However, despite these
advancements, a holistic approach that simultaneously prior-
itizes safety in both system and task execution performance
and specification remains relatively unexplored [2].

In this work, we incorporate safety constraints through
control barrier functions (CBFs), leading to control laws
derived by implementing quadratic programming (QP) that
ensures the system’s safety. This approach has been ap-
plied across a variety of applications, including robotics
[10], multi-agent systems [11], and automated vehicles [12],
among others. It has already been noted that safety con-
straints concern not only the kinematic behavior of the
FBMMS but also heavily depend on the system’s dynamic
model. We address all these constraints using zeroing control
barrier functions (ZCBFs), which are well-defined on the
boundary and exterior of the safe sets, unlike the reciprocal
CBFs [13]. The solution’s consistency with respect to both
the kinematics and dynamics of the system is ensured,
and the modelling uncertainties of the system dynamics are
handled by a robust QP formulation.



II. PROBLEM FORMULATION

Consider a FBMMS with n degrees of freedom that’s
in compliant contact with a flat surface. Define the state
variables of the FBMMS as qqq = [qqq⊤a , qqq⊤m ]

⊤ ∈ Rn. Here,
qqqa = [ηηη⊤

1 ,ηηη
⊤
222 ]

⊤ ∈R6 encompasses the position vector ηηη1 =
[xv,yv,zv]

⊤ and the orientation ηηη2 = [φ ,θ ,ψ]⊤ of the vehicle,
depicted using the Euler-angles in relation to an inertial
frame {I}. Furthermore, qqqm ∈ Rn−6 represents the angle
vector for the manipulator’s joints. Introducing the frame
{E} positioned at the FBMMS’s end-effector, it’s defined
by a position vector xxxe = [xe,ye,ze]

⊤ ∈R3 and an orientation
matrix RRRe = [nnne,oooe,αααe] in relation to the inertial frame
{I}. Additionally, let ωωωe denote the end-effector’s rotational
velocity, for which SSS(ωωωe) = ṘRReRRR⊤

e . The skew-symmetric
matrix for the vector ddd = [dx dy dz]

⊤ can be expressed as:

SSS(ddd) =

 0 −dz dy
dz 0 −dx
−dy dx 0


. Consider ẋxx as an element of R6 representing the velocity
of the end-effector frame. Drawing from the findings in [14],
one can express:

ẋxx = JJJ(qqq)ζζζ (1)

Here, ζζζ = [vvv⊤,ζζζ⊤
m,i]

⊤ ∈Rn encompasses the velocity compo-
nents: the vehicle’s body velocities vvv and the joint velocities
of the manipulator, represented as ζζζ m,i for i ranging from 1
to n−6. Additionally, JJJ(qqq) of dimension R6×n is identified
as the geometric Jacobian matrix, as detailed in [14].

Assuming initial contact of the MMS with a planar sur-
face, knowledge of the normal and tangential vectors in
relation to the inertial frame {I} is presumed. For clarity
in representation, let the inertial frame {I} be anchored at
a specific point on the surface. The frame’s x-axis, oriented
normal to the surface, points inward as illustrated in Fig.1.

Now, let us denote the unit vector normal to the contact
surface and the generalized normal vector as nnns = [1 0 0]⊤ ∈
R3 and nnn = [nnn⊤s 000⊤3 ]

⊤ ∈ R6 respectively.
We also assume that the end-effector is rigid, thus the

contact compliance arises from the planar surface1. Hence,
the deformation χ is given as a function of xxxe as follows:

χ = nnn⊤s xxxe = xe (2)

and its derivative is calculated by:

χ̇ = nnn⊤s ẋxxe = ẋe (3)

During an intervention task, the FBMMS exerts an interac-
tion wrench λλλ ∈ R6 at the contact, which can be measured
by a force/torque sensor attached to its end-effector. This
interaction wrench can be decomposed into: (i) nnnnnn⊤λλλ that is
normal to the surface and (ii) (III6×6 −nnnnnn⊤)λλλ involving tan-
gential forces and torques, owing to tangential deformations
and friction terms. In this work, we assume that the normal

1In case of FBMMS with soft tip, the compliance may arise either from
the tip side or the surface or both. Thus, the deformation can also be derived
without affecting the subsequent analysis.

force magnitude f = nnn⊤λλλ is a positive and continuously
differentiable nonlinear function of the material deformation
χ:

f = Φ(χ), ∀χ ≥ 0. (4)

The aforementioned general formulation includes several
force deformation models such as the Hertz model [15]
(Φ(χ) = kχ

3
2 ,k > 0) or the quadratic model Φ(χ) = kχ2,k >

0 [16]. The time derivative of the normal force magnitude in
view of (3) is then given by:

ḟ = ∂Φ(χ)ẋe (5)

where ∂Φ(χ) = dΦ

dχ
is strictly positive for all χ ≥ χ∗ > 0,

where χ∗ is any strictly real positive number. Thus, there is
an unknown strictly positive constant ∂Φ∗ such that:

∂Φ(χ)≥ ∂Φ
∗ > 0,∀χ ≥ χ

∗. (6)

Without loss of generality, the dynamics of the FBMMS
in complaint contact with the environment is formulated as
[14]:

MMM(qqq)ζ̇ζζ+CCC(qqq,ζζζ )ζζζ+DDD(qqq,ζζζ )ζζζ+ggg(qqq)+JJJ⊤(qqq)λλλ+δδδ (qqq,ζζζ , t)=τττ

(7)

where δδδ (qqq,ζζζ , t) encapsulates bounded unmodeled terms and
external disturbances (sea waves and currents). Moreover,
τττ ∈ Rn denotes the control input at the joint/thruster level,
M(qqq) is the positive definite inertial matrix, C(qqq,ζζζ ) repre-
sents coriolis and centrifugal terms, D(qqq,ζζζ ) models dissi-
pative effects, g(qqq) encapsulates the gravity and buoyancy
effects and JJJ⊤(qqq)λλλ represents the effect of the external
forces/torques applied at the end-effector owing to the con-
tact.

III. CONTROL METHODOLOGY

When addressing force/position control challenges, it’s
crucial that the robot’s end-effector adheres to a predefined
force path normal to a contact surface, maintains the target
position trajectory on that surface, and achieves the desired
orientation in relation to the surface. The errors for force,
position, orientation, and the cumulative error vector are
described as follows:

e f = f − f d ∈ R, (8a)

eeep ≜

[
ey
ez

]
=

[
ye − yd

e
ze − zd

e

]
∈ R2, (8b)

eeeo ≜

eo1
eo2
eo3

=
1
2

(
nnne ×nnnd +oooe ×oood +αααe ×ααα

d
)

∈ R3,

(8c)

eee ≜ [e f ,ey,ez,eo1 ,eo2 ,eo3 ]
⊤ ∈ R6. (8d)

For the calculation of the orientation error eeeo, the cross
product operation between RRRe and RRRd is utilized to address
the singularities often present when using Euler angles for
rotation representations, as suggested in the literature [17],
[18].



In view of (5), time differentiation of errors (8a)-(8c) leads
to their respective rates as:

ė f = ∂ f (χ)ẋe − ḟ d , (9a)

ėeep =

[
ėy
ėz

]
=

[
ẏe − ẏd

e
że − żd

e

]
, (9b)

ėeeo =

ėo1
ėo2
ėo3

= LLLωωωe −LLLωωω
d , (9c)

where LLL is defined as:

LLL =
1
2

[
SSS(nnne)SSS(nnnd)+SSS(oooe)SSS(oood)+SSS(αααe)SSS(αααd)

]
(10)

which is full rank when the relative orientation between the
frames RRRe and RRRd is confined less than 90◦ for an angle-axis
local parametrization and hence is not restrictive for practical
cases [18].

A. Control Design

In this section, zeroing control barrier functions (ZCBF)
which guarantees the forward invariance of the correspond-
ing safe sets are used to meet the control objectives. Consider
the force, position and orientation errors evolve strictly
within predefined safe regions that are mathematically ex-
pressed as:

−Mi < ei(t)< Mi, i ∈ { f ,y,z,o1,o2,o3}, ∀t ≥ 0 (11)

The constants Mi, Mi, are selected such that (11) is
satisfied at t = 0 (i.e., −Mi < ei(0)< Mi). The bounds of the
errors ei(t), and actually the maximum overshoot is defined
to be less than Mi) or Mi. Thus, the appropriate selection
of the design constants Mi, Mi, i ∈ { f ,y,z,o1,o2,o3} en-
capsulates performance characteristics for the corresponding
tracking errors ei, i ∈ { f ,y,z,o1,o2,o3}.

The satisfaction of the performance criteria for force
error, as outlined in (11), paves the way for ensuring two
critical conditions. Firstly, contact with the surface remains
unbroken, meaning f (t)≥ f ∗ > 0, ∀t ≥ 0, where f ∗ denotes
a positive constant. Secondly, there’s prevention against
incurring inordinately high interaction forces, illustrated as
f (t) ≤ f ∗ > 0, ∀t ≥ 0, with f ∗ being another positive
constant that is strictly greater than f ∗. Building on this
foundation, criteria for M f and M f are chosen to meet:
inft≥0{−M f + f d(t)} > f ∗ and supt≥0{M f + f d(t)} < f ∗.
These criteria confirm that for any t ≥ 0, f (t) resides within
the bounds given by inft≥0{−M f + f d(t)} and supt≥0{M f +
f d(t)}. Lastly, considering the constraints of (6), there are
two constants, ∂ f and ∂ f . Their relationship is defined as
0 < ∂ f ≤ ∂ f (χ)≤ ∂ f .

B. Kinematic Safety-Critical Control

Suppose that we have a desired trajectory in force f d(t),
in position pppd(t) = [yd(t),zd(t)]⊤ and a desired rotation
RRRd(t) to be tracked by the controller and the error vector
for this trajectory as defined in (9). Then, if we pick the
trajectory tracking controller ẋxxc = [ẋc

e, ṗppc⊤
e ,ωωωc⊤

e ]⊤, in which
ṗppc

e = [ẏc
e, ż

c
e]
⊤, such that ėee = −γeee for a positive constant γ ,

a stable linear system will be resulted and the reference
trajectory is being tracked. For this aim and in view of (6),
by picking

ẋc
e = ∂ f (χ)−1( ḟ d − γe f ), (12a)

ṗppc
e = ṗppd − γeeep, (12b)

ωωω
c
e = ωωω

d − γeeeoLLL−1, (12c)

the exponential stability in the error dynamics, i.e., eee(t) ≤
exp(−γt)eee(0) is achieved. Next we propose a state feed-
back control protocol that incorporates the performance
constraints of (11) by employing the ZCBF notion and
achieves force/position/orientation tracking of the corre-
sponding smooth and bounded desired trajectories.

Definition 1: [19] Zeroing Control Barrier Functions:
Consider the system

ẋxx = f (xxx)+g(xxx)uuu (13)

, where f (·) and g(·) are locally Lipschitz functions and uuu
is constrained in a compact set U ⊂ Rm. Let Cb ⊂ D be
the superlevel set of a continuously differentiable function
b : D ⊂Rn →R, i.e., Cb := {xxx ∈Rn : b(xxx)≥ 0}. Then, b is a
zeroing control barrier function (ZCBF) for the system (13)
if there exists an extended class K∞ function α such that

sup
u∈U

[∇b(xxx)⊤( f (xxx)+g(xxx)uuu)+α(b(xxx))]≥ 0,xxx ∈ D. (14)

Consider the barrier functions of the form:

bi(ei) := (ei +Mi)
(
Mi − ei

)
, i ∈ { f ,y,z,o1,o2,o3}. (15)

Accordingly, the corresponding safe sets of the barrier func-
tions (15) will be as:

Si := {ei ∈ R : bi(ei)≥ 0}, i ∈ { f ,y,z,o1,o2,o3}. (16)

Lemma 1: Let the sets Si, i ∈ { f ,y,z,o1,o2,o3} as the
superlevel set of continuously differentiable functions bi :
R → R defined in (15). Then, the safety-critical velocity
based controller from the quadratic problem

ẋxx∗(xxx, t) = argminẋxx∈R6∥− γeee∥2

s.t.
JJJ(qqq)ζζζ − ẊXXd [(MMM−MMM)−2(xxx− xxxd)]

+ [αi(bi)]i∈{ f ,y,z,o1,o2,o3} ≥ 000, (17)

in which MMM := [Mi] ∈ R6, MMM := [Mi] ∈ R6,
i ∈ { f ,y,z,o1,o2,o3}, ẊXXd := ẋxxdI6 ∈ R6×6, for identity
matrix I6 ∈R6×6, and the functions αi, i ∈ { f ,y,z,o1,o2,o3}
are of class K∞, ensures the forward invariance of the
sets Si and hence the safety satisfaction. Moreover, the
closed-form solution is given by

ẋxx∗(xxx, t) = ẋxxc(xxx, t)+ lll(xxx, t) (18)

in which lll = [li]i∈{1,··· ,6} ∈ R6 and

li =
{

hi if ψi < 0
0 if ψi ≥ 0, (19)



where hi is the ith element of the vector hhh = [hi]i∈{1,··· ,6} =
HHHΨ

∥HHH∥2 and HHH := [(MMM−MMM)−2(xxx−xxxd)]I6 ∈R6×6. Similarly, ψi

is the ith element of the vector ψψψ = [ψi]i∈{1,··· ,6} and ψψψ :=
JJJ(qqq)ζζζ − ẊXXc[(MMM −MMM)− 2(xxx− xxxd)]+ [αi(bi)]i∈{ f ,y,z,o1,o2,o3} ∈
R6, with ẊXXc := ẋxxcI6. Then, the controller (19) utilizes ẋxxc(xxx, t)
whenever the system is safe with respect to the defined
barrier functions, i.e., when Ψ ≥ 000. On the other hand, in
the case that ẋxxc(xxx, t) doesn’t enforce the safety condition,
the controller (19) enforces the system until ẋxxc(xxx, t) is safe
again.

Proof: The closed form- expression for ẋxx∗(xxx, t) is
achieved by the satisfaction of KKT optimality conditions
and following Definition 1 and [20, Theorem 2].

Subsequently, the task-space desired motion profile ẋxx∗ can
be expressed equivalently in the configuration space via:

ζζζ
r
(t) = JJJ(qqq)#ẋxx∗+

(
IIIn×n − JJJ(qqq)#JJJ

(
qqq
))

ẋxx0 ∈ Rn (20)

where JJJ(qqq)# denotes the generalized pseudo-inverse [21] of
the Jacobian JJJ(qqq) and ẋxx0 denotes secondary tasks (e.g., main-
taining manipulator’s joint limits, increasing manipulability)
to be regulated independently since they do not contribute to
the end-effector’s velocity [22] (i.e., they belong to the null
space of the Jacobian JJJ(qqq))2.

C. Control Barrier Function Based Velocity Control

Given the desired configuration space motion profile ζζζ
r
(t)

in (20) that satisfies different operational limitations, we
proceed with the design of a CBF-based velocity controller
that achieves certain predefined minimum speed of response.
Similar to the kinematic safety constraints, the first step is
to define the velocity error vector:

eeeζ (t)≜ [eζ1
(t), . . . ,eζn(t)]

⊤ = ζζζ (t)−ζζζ
r
(t) ∈ Rn (21)

We aim to impose bounded response on the system velocities
errors eζi(t), i = 1, . . . ,n as well by satisfying:

−ρζi < eζi(t)< ρζi , ∀t ≥ 0 i = 1, . . . ,n (22)

where, ρζi , i = 1, . . . ,n is the predefined velocity bound that
is set according to each system DoF. We define the new error
vector

ξ = ξ (ζζζ , t) := ρ
−1
ζ

eζ (t) (23)

where ρζ := diag(ρζi), i = 1, . . . ,n. The control objective is
then equivalent to maintaining the normalized error ξ (t) in
the set (−1,1). For this aim, we define the continuously
differentiable barrier function b : Rn ×R≥0 → R and its 0-
superlevel set as

b(ζζζ , t) :=
1
2
(1−∥ξ∥2) =

1
2
(1−∥ξ (ζζζ , t)∥2), (24)

Cb(t) := {ζζζ ∈ Rn :
1
2
(1−d2)≥ b(ζζζ , t)≥ 0}. (25)

where the constant 0< d < 1 with d ≤∥ξ∥2 is considered for
the sake of controllability maintenance. The goal is to render

2For more details on task priority based control and redundancy resolution
for MMSs the reader is referred to [22] and [23].

the set Cb(t) forward invariant, i.e., to guarantee that ζζζ (t) ∈
Cb(t),∀t ≥ 0, provided that ζζζ (0)∈Cb(0) [19]. By evaluating
the derivative of b(ζζζ , t) along the system dynamics (7), and
by considering Definition 1 it can be concluded that if there
exists an extended class K∞ function α such that the set
Kv(qqq,ζζζ , t) is non-empty for all ζζζ , the function b(ζζζ , t) is a
ZCBF. Therefore, considering the unknown δ (qqq,ζζζ , t) and its
upper bound δ̄ ≥ δδδ (qqq,ζζζ , t) > 0,∀(qqq,ζζζ , t), we can define a
conservative set K̄v(qqq,ζζζ , t) as below

¯Kv(qqq,ζζζ , t) = {τττ ∈ Rn : −ξ
⊤

ρ
−1(ζζζ −ζζζ

r
)MMM−1(qqq)

× (−CCC(qqq,ζζζ )ζζζ−DDD(qqq,ζζζ )ζζζ−ggg(qqq)+ τττ)

+α(
1
2
(1−∥ξ∥2))− δ̄∥ξ

⊤
ρ
−1(ζζζ −ζζζ

r
)MMM−1(qqq)∥ ≥ 0}.

(26)

The non-emptiness of ¯Kv(qqq,ζζζ , t) implicates the standard
ZCBF-based condition, as in (14). The control design
consists of computing a controller that satisfies
τττ(qqq,ζζζ , t)∈ K̄v(qqq,ζζζ , t) for all (qqq,ζζζ , t), given a ZCBF b(ζζζ , t).

D. Kinematic-Consistent Dynamic Safety-Critical Control

Now it is required to ensure that the kinematics barrier
functions (15) are consistent with the system dynamics. In
order to achieve this, we follow an energy-based approach
provided in [24]. We will guarantee the safety of the com-
bined dynamics of the mobile manipulator systems. First,
consider the FBMMS’s dynamics (7). In order to bridge the
kinematics to dynamics, we extend the kinematic safe set
to a dynamic one. In this regard, we note that the inertia
matrix MMM(qqq) is a symmetric positive-definite matrix, i.e.,
MMM(qqq) = MMM(qqq)T > 0. Then we have

λmin(MMM(qqq))∥qqq∥2 ≤ qqqT (MMM(qqq))qqq ≤ λmax(MMM(qqq))∥qqq∥2, (27)

where λmin and λmax are the minimum and maximum eigen-
values (dependent on qqq) of the inertia matrix MMM(qqq), and are
positive due to the positive-definiteness property of MMM(qqq).

In addition, let

bk :=− 1
η

ln(∑
i

exp(−ηbi(ei)), (28)

with η > 0 be a smooth approximation of the min-operator
to encode the conjunction of barrier functions bi(ei), i ∈
{ f ,y,z,o1,o2,o3} in (15). Note that the accuracy of this
approximation is proportionally related to η , and regardless
of the choice of η we have

− 1
η

ln(
n

∑
i=1

exp(−ηbi(ei))≤ min(bi(ei) i∈{ f ,y,z,o1,o2,o3}.

(29)

Therefore, bk ≥ 0 implies bi(ei) ≥ 0 for all i ∈
{ f ,y,z,o1,o2,o3}, that means practically the satisfaction of
the kinematic safety constraints of (15).

Definition 2: Consider the kinematic barrier function bk
, the associated energy-based barrier function is defined as

bd(qqq,ζζζ ) :=−1
2

ζζζ
⊤MMM(qqq)ζζζ + γbk ≥ 0, (30)



with γ > 0. The corresponding dynamic safety set is defined
as

Cd := {(qqq,ζζζ ) ∈ Q×Rn : bd(qqq,ζζζ )≥ 0}. (31)
It can easily be shown that Cd ⊂ C , and Int(C ) ⊂
limγ→∞ Cd ⊂C , where C determines the safe set correspond-
ing to the barrier function bk [24].

Theorem 1: Consider the robotic system dynamic (7).
Let bk : Q ⊂ Rn → R the kinematic barrier function , the
energy-based barrier function bd as in (30), and the velocity-
based barrier function b as in (24). Then, bd and b are valid
zeroing control barrier function on Cd and Cb, respectively.
Furthermore, the control signal τττsafe(qqq,ζζζ , t) that can solve
the following optimization problem

min
τττ∈Rn

∥τττ − τττdes(qqq,ζζζ , t)∥2

s.t.

−ζζζ
⊤

τττ +ggg⊤ζζζ − δ̄
⊤∥ζζζ∥+ γJJJbk ζζζ ≥−α(bd(qqq,ζζζ )), (32a)

−ξ
⊤
ρ
−1(ζζζ−ζζζ

r
)MMM−1(qqq)(−CCC(qqq,ζζζ )ζζζ−DDD(qqq,ζζζ )ζζζ−ggg(qqq)+τττ)

−δ̄∥ξ
⊤

ρ
−1(ζζζ−ζζζ

r
)MMM−1(qqq)∥ ≥ −α(b(ζζζ , t)), (32b)

in which τττdes(qqq,ζζζ , t) is a given desired stabilizing controller,
δ̄ ≥ δδδ (qqq,ζζζ , t) > 0,∀(qqq,ζζζ , t) and JJJbk =

∂bk
∂qqq , guarantees the

forward invariance (safety) of Cd .
Proof: By differentiating the barrier function bd along

the system dynamics (7), utilizing the skew symmetric prop-
erty of the matrix ˙MMM(qqq)−CCC(qqq,ζζζ )−DDD(qqq,ζζζ ), and the upper
bound δ̄ , we get the inequality (32a) for ḃd ≥ α(bd(qqq,ζζζ )).
According to Definition 1 if (32a) has a solution, then bd
is a valid ZCBF. Moreover, getting the derivative of the
barrier function (24) with respect to the system dynamics
(7) and applying the inequality condition in (14) results in
the inequality (32b). Then, the feasibility of (32b) for (qqq,ζζζ , t)
guarantees that b(ζζζ , t) is a ZCBF and the controller satisfying
τττ(qqq,ζζζ , t) ∈ K̄v(qqq,ζζζ , t) (in (26)) for all (qqq,ζζζ , t).

IV. SIMULATION RESULTS

The simulation results using MATLAB® designed for an
underwater vehicle manipulator system (UVMS) with inher-
ent uncertainties and external disturbances [25], equipped
with a small 4 DoFs manipulator based on the Newton-
Euler approach [26]. We consider a scenario involving 3D
motion, where the end-effector is in compliant contact with a
planar surface with stiffness model f = kχ2, k = 300 N

m2 . The
UVMS is in contact with the compliant environment exerting
a force normal to the surface f (0) = 0.45 N. The desired
force, normal to the surface direction, is set as f d(t) =
1N. The UVMS should track a desired position trajectory
on the surface and attain a perpendicular orientation (i.e.,
RRRd = I3×3) with respect to the surface. We choose f ∗ = 0.2N
and f ∗ = 1.8N such that the contact with the surface isn’t
lost and that excessive interaction forces are avoided. We
set the parameters MMM := [1.0, 0.1, 0.1, 0.3, 0.2, 0.2], MMM :=
[0.5, 0.1, 0.1, 0.3, 0.2, 0.2], and ρζi = 0.5. The dynamics
of the UVMS are affected by external disturbances in the

form of slowly time varying sea currents acting along x, y
and z axes modeled by the corresponding velocities v{I}

i =
0.1sin( π

25 t)m
s , i ∈ {x,y,z}. Finally, bounded measurement

noise of normal distribution with 5% standard deviation was
considered. The results are depicted in Fig.2-Fig.4. Fig.2
presents the evolution of the actual force exerted by the
UVMS with respect to the desired force profile. It can be
seen that the force exerted by the UVMS remained inside the
desired region and the contact is never lost. The evolution
of the errors at the first and second level of the proposed
controller are illustrated in Fig.3 and Fig.4, respectively. It
can be concluded that even with the influence of external
disturbances as well as measurements noise, the errors in all
directions remain in the predefined safe sets.

Fig. 2. The evolution of the force trajectory. The desired constant force
and the actual force exerted by the UVMS are indicated by green and red
color respectively.

Fig. 3. The evolution of the errors at the first level of the proposed control
scheme. The errors and performance bounds are indicated by blue and red
color respectively.



Fig. 4. The evolution of the errors at the second level of the proposed
control scheme. The errors and safety bounds are indicated by blue and red
color respectively.

V. CONCLUSIONS

This paper introduces a robust force/position control strat-
egy for free floating Mobile Manipulator Systems that in-
teract compliantly with their environment, finding notable
applications in areas such as welding. The advanced control
design adapts to uncertainties in system dynamic parameters
and the stiffness model. It ensures a predetermined behav-
ior by controlling desired overshoot and exhibits resilience
against external disturbances and uncertainties. By inte-
grating the Zeroing Control Barrier Function the proposed
method accounts for operational challenges, including joint
constraints, kinematic singularities, contact maintenance, and
performance boundaries related to trajectory and rotation
tracking. As a result, the proposed controller not only meets
but efficiently manages all these constraints and limitations.
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